InstructABSA: Instruction Learning for Aspect Based Sentiment Analysis Article Swipe
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2302.08624
We introduce InstructABSA, an instruction learning paradigm for Aspect-Based Sentiment Analysis (ABSA) subtasks. Our method introduces positive, negative, and neutral examples to each training sample, and instruction tune the model (Tk-Instruct) for ABSA subtasks, yielding significant performance improvements. Experimental results on the Sem Eval 2014, 15, and 16 datasets demonstrate that InstructABSA outperforms the previous state-of-the-art (SOTA) approaches on Term Extraction (ATE), Sentiment Classification(ATSC) and Sentiment Pair Extraction (ASPE) subtasks. In particular, InstructABSA outperforms the previous state-of-the-art (SOTA) on the Rest14 ATE subtask by 5.69% points, the Rest15 ATSC subtask by 9.59% points, and the Lapt14 AOPE subtask by 3.37% points, surpassing 7x larger models. We also get competitive results on AOOE, AOPE, and AOSTE subtasks indicating strong generalization ability to all subtasks. Exploring sample efficiency reveals that just 50% train data is required to get competitive results with other instruction tuning approaches. Lastly, we assess the quality of instructions and observe that InstructABSA's performance experiences a decline of ~10% when adding misleading examples.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2302.08624
- https://arxiv.org/pdf/2302.08624
- OA Status
- green
- Cited By
- 3
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4321392371
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4321392371Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2302.08624Digital Object Identifier
- Title
-
InstructABSA: Instruction Learning for Aspect Based Sentiment AnalysisWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-02-16Full publication date if available
- Authors
-
Kevin Scaria, Himanshu Gupta, Siddharth Goyal, Saurabh Arjun Sawant, Swaroop Mishra, Chitta BaralList of authors in order
- Landing page
-
https://arxiv.org/abs/2302.08624Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2302.08624Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2302.08624Direct OA link when available
- Concepts
-
Generalization, Computer science, Sample (material), Artificial intelligence, Sentiment analysis, Machine learning, Term (time), Quality (philosophy), Natural language processing, Mathematics, Epistemology, Mathematical analysis, Physics, Chromatography, Chemistry, Quantum mechanics, PhilosophyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
3Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1, 2024: 1, 2023: 1Per-year citation counts (last 5 years)
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4321392371 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2302.08624 |
| ids.doi | https://doi.org/10.48550/arxiv.2302.08624 |
| ids.openalex | https://openalex.org/W4321392371 |
| fwci | |
| type | preprint |
| title | InstructABSA: Instruction Learning for Aspect Based Sentiment Analysis |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10664 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9995999932289124 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Sentiment Analysis and Opinion Mining |
| topics[1].id | https://openalex.org/T11550 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9887999892234802 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | Text and Document Classification Technologies |
| topics[2].id | https://openalex.org/T13083 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9868999719619751 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1702 |
| topics[2].subfield.display_name | Artificial Intelligence |
| topics[2].display_name | Advanced Text Analysis Techniques |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C177148314 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7744573354721069 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q170084 |
| concepts[0].display_name | Generalization |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.7392857074737549 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C198531522 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6265245676040649 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q485146 |
| concepts[2].display_name | Sample (material) |
| concepts[3].id | https://openalex.org/C154945302 |
| concepts[3].level | 1 |
| concepts[3].score | 0.5991162061691284 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[3].display_name | Artificial intelligence |
| concepts[4].id | https://openalex.org/C66402592 |
| concepts[4].level | 2 |
| concepts[4].score | 0.4868027865886688 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q2271421 |
| concepts[4].display_name | Sentiment analysis |
| concepts[5].id | https://openalex.org/C119857082 |
| concepts[5].level | 1 |
| concepts[5].score | 0.4492746591567993 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[5].display_name | Machine learning |
| concepts[6].id | https://openalex.org/C61797465 |
| concepts[6].level | 2 |
| concepts[6].score | 0.42774778604507446 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q1188986 |
| concepts[6].display_name | Term (time) |
| concepts[7].id | https://openalex.org/C2779530757 |
| concepts[7].level | 2 |
| concepts[7].score | 0.42642539739608765 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q1207505 |
| concepts[7].display_name | Quality (philosophy) |
| concepts[8].id | https://openalex.org/C204321447 |
| concepts[8].level | 1 |
| concepts[8].score | 0.34527212381362915 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q30642 |
| concepts[8].display_name | Natural language processing |
| concepts[9].id | https://openalex.org/C33923547 |
| concepts[9].level | 0 |
| concepts[9].score | 0.11357516050338745 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[9].display_name | Mathematics |
| concepts[10].id | https://openalex.org/C111472728 |
| concepts[10].level | 1 |
| concepts[10].score | 0.0 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q9471 |
| concepts[10].display_name | Epistemology |
| concepts[11].id | https://openalex.org/C134306372 |
| concepts[11].level | 1 |
| concepts[11].score | 0.0 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q7754 |
| concepts[11].display_name | Mathematical analysis |
| concepts[12].id | https://openalex.org/C121332964 |
| concepts[12].level | 0 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[12].display_name | Physics |
| concepts[13].id | https://openalex.org/C43617362 |
| concepts[13].level | 1 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q170050 |
| concepts[13].display_name | Chromatography |
| concepts[14].id | https://openalex.org/C185592680 |
| concepts[14].level | 0 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q2329 |
| concepts[14].display_name | Chemistry |
| concepts[15].id | https://openalex.org/C62520636 |
| concepts[15].level | 1 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q944 |
| concepts[15].display_name | Quantum mechanics |
| concepts[16].id | https://openalex.org/C138885662 |
| concepts[16].level | 0 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q5891 |
| concepts[16].display_name | Philosophy |
| keywords[0].id | https://openalex.org/keywords/generalization |
| keywords[0].score | 0.7744573354721069 |
| keywords[0].display_name | Generalization |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.7392857074737549 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/sample |
| keywords[2].score | 0.6265245676040649 |
| keywords[2].display_name | Sample (material) |
| keywords[3].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[3].score | 0.5991162061691284 |
| keywords[3].display_name | Artificial intelligence |
| keywords[4].id | https://openalex.org/keywords/sentiment-analysis |
| keywords[4].score | 0.4868027865886688 |
| keywords[4].display_name | Sentiment analysis |
| keywords[5].id | https://openalex.org/keywords/machine-learning |
| keywords[5].score | 0.4492746591567993 |
| keywords[5].display_name | Machine learning |
| keywords[6].id | https://openalex.org/keywords/term |
| keywords[6].score | 0.42774778604507446 |
| keywords[6].display_name | Term (time) |
| keywords[7].id | https://openalex.org/keywords/quality |
| keywords[7].score | 0.42642539739608765 |
| keywords[7].display_name | Quality (philosophy) |
| keywords[8].id | https://openalex.org/keywords/natural-language-processing |
| keywords[8].score | 0.34527212381362915 |
| keywords[8].display_name | Natural language processing |
| keywords[9].id | https://openalex.org/keywords/mathematics |
| keywords[9].score | 0.11357516050338745 |
| keywords[9].display_name | Mathematics |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2302.08624 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2302.08624 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2302.08624 |
| locations[1].id | doi:10.48550/arxiv.2302.08624 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2302.08624 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5038616311 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Kevin Scaria |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Scaria, Kevin |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5107117896 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-3537-2202 |
| authorships[1].author.display_name | Himanshu Gupta |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Gupta, Himanshu |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5109633499 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Siddharth Goyal |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Goyal, Siddharth |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5080454694 |
| authorships[3].author.orcid | |
| authorships[3].author.display_name | Saurabh Arjun Sawant |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Sawant, Saurabh Arjun |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5063722751 |
| authorships[4].author.orcid | https://orcid.org/0009-0001-6413-7001 |
| authorships[4].author.display_name | Swaroop Mishra |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Mishra, Swaroop |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5083735830 |
| authorships[5].author.orcid | https://orcid.org/0000-0002-7549-723X |
| authorships[5].author.display_name | Chitta Baral |
| authorships[5].author_position | last |
| authorships[5].raw_author_name | Baral, Chitta |
| authorships[5].is_corresponding | False |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2302.08624 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | InstructABSA: Instruction Learning for Aspect Based Sentiment Analysis |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10664 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9995999932289124 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Sentiment Analysis and Opinion Mining |
| related_works | https://openalex.org/W3089396779, https://openalex.org/W2548633793, https://openalex.org/W3013279174, https://openalex.org/W2941935829, https://openalex.org/W2596247554, https://openalex.org/W4301373556, https://openalex.org/W3132372214, https://openalex.org/W4224284088, https://openalex.org/W4286571989, https://openalex.org/W2765903680 |
| cited_by_count | 3 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 1 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 1 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2302.08624 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2302.08624 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2302.08624 |
| primary_location.id | pmh:oai:arXiv.org:2302.08624 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2302.08624 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2302.08624 |
| publication_date | 2023-02-16 |
| publication_year | 2023 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 156 |
| abstract_inverted_index.16 | 47 |
| abstract_inverted_index.7x | 102 |
| abstract_inverted_index.In | 70 |
| abstract_inverted_index.We | 0, 105 |
| abstract_inverted_index.an | 3 |
| abstract_inverted_index.by | 83, 90, 98 |
| abstract_inverted_index.is | 132 |
| abstract_inverted_index.of | 148, 158 |
| abstract_inverted_index.on | 40, 58, 78, 110 |
| abstract_inverted_index.to | 21, 120, 134 |
| abstract_inverted_index.we | 144 |
| abstract_inverted_index.15, | 45 |
| abstract_inverted_index.50% | 129 |
| abstract_inverted_index.ATE | 81 |
| abstract_inverted_index.Our | 13 |
| abstract_inverted_index.Sem | 42 |
| abstract_inverted_index.all | 121 |
| abstract_inverted_index.and | 18, 25, 46, 64, 93, 113, 150 |
| abstract_inverted_index.for | 7, 31 |
| abstract_inverted_index.get | 107, 135 |
| abstract_inverted_index.the | 28, 41, 53, 74, 79, 86, 94, 146 |
| abstract_inverted_index.ABSA | 32 |
| abstract_inverted_index.AOPE | 96 |
| abstract_inverted_index.ATSC | 88 |
| abstract_inverted_index.Eval | 43 |
| abstract_inverted_index.Pair | 66 |
| abstract_inverted_index.Term | 59 |
| abstract_inverted_index.also | 106 |
| abstract_inverted_index.data | 131 |
| abstract_inverted_index.each | 22 |
| abstract_inverted_index.just | 128 |
| abstract_inverted_index.that | 50, 127, 152 |
| abstract_inverted_index.tune | 27 |
| abstract_inverted_index.when | 160 |
| abstract_inverted_index.with | 138 |
| abstract_inverted_index.~10% | 159 |
| abstract_inverted_index.2014, | 44 |
| abstract_inverted_index.3.37% | 99 |
| abstract_inverted_index.5.69% | 84 |
| abstract_inverted_index.9.59% | 91 |
| abstract_inverted_index.AOOE, | 111 |
| abstract_inverted_index.AOPE, | 112 |
| abstract_inverted_index.AOSTE | 114 |
| abstract_inverted_index.model | 29 |
| abstract_inverted_index.other | 139 |
| abstract_inverted_index.train | 130 |
| abstract_inverted_index.(ABSA) | 11 |
| abstract_inverted_index.(ASPE) | 68 |
| abstract_inverted_index.(ATE), | 61 |
| abstract_inverted_index.(SOTA) | 56, 77 |
| abstract_inverted_index.Lapt14 | 95 |
| abstract_inverted_index.Rest14 | 80 |
| abstract_inverted_index.Rest15 | 87 |
| abstract_inverted_index.adding | 161 |
| abstract_inverted_index.assess | 145 |
| abstract_inverted_index.larger | 103 |
| abstract_inverted_index.method | 14 |
| abstract_inverted_index.sample | 124 |
| abstract_inverted_index.strong | 117 |
| abstract_inverted_index.tuning | 141 |
| abstract_inverted_index.Lastly, | 143 |
| abstract_inverted_index.ability | 119 |
| abstract_inverted_index.decline | 157 |
| abstract_inverted_index.models. | 104 |
| abstract_inverted_index.neutral | 19 |
| abstract_inverted_index.observe | 151 |
| abstract_inverted_index.points, | 85, 92, 100 |
| abstract_inverted_index.quality | 147 |
| abstract_inverted_index.results | 39, 109, 137 |
| abstract_inverted_index.reveals | 126 |
| abstract_inverted_index.sample, | 24 |
| abstract_inverted_index.subtask | 82, 89, 97 |
| abstract_inverted_index.Analysis | 10 |
| abstract_inverted_index.datasets | 48 |
| abstract_inverted_index.examples | 20 |
| abstract_inverted_index.learning | 5 |
| abstract_inverted_index.paradigm | 6 |
| abstract_inverted_index.previous | 54, 75 |
| abstract_inverted_index.required | 133 |
| abstract_inverted_index.subtasks | 115 |
| abstract_inverted_index.training | 23 |
| abstract_inverted_index.yielding | 34 |
| abstract_inverted_index.Exploring | 123 |
| abstract_inverted_index.Sentiment | 9, 62, 65 |
| abstract_inverted_index.examples. | 163 |
| abstract_inverted_index.introduce | 1 |
| abstract_inverted_index.negative, | 17 |
| abstract_inverted_index.positive, | 16 |
| abstract_inverted_index.subtasks, | 33 |
| abstract_inverted_index.subtasks. | 12, 69, 122 |
| abstract_inverted_index.Extraction | 60, 67 |
| abstract_inverted_index.approaches | 57 |
| abstract_inverted_index.efficiency | 125 |
| abstract_inverted_index.indicating | 116 |
| abstract_inverted_index.introduces | 15 |
| abstract_inverted_index.misleading | 162 |
| abstract_inverted_index.surpassing | 101 |
| abstract_inverted_index.approaches. | 142 |
| abstract_inverted_index.competitive | 108, 136 |
| abstract_inverted_index.demonstrate | 49 |
| abstract_inverted_index.experiences | 155 |
| abstract_inverted_index.instruction | 4, 26, 140 |
| abstract_inverted_index.outperforms | 52, 73 |
| abstract_inverted_index.particular, | 71 |
| abstract_inverted_index.performance | 36, 154 |
| abstract_inverted_index.significant | 35 |
| abstract_inverted_index.Aspect-Based | 8 |
| abstract_inverted_index.Experimental | 38 |
| abstract_inverted_index.InstructABSA | 51, 72 |
| abstract_inverted_index.instructions | 149 |
| abstract_inverted_index.(Tk-Instruct) | 30 |
| abstract_inverted_index.InstructABSA, | 2 |
| abstract_inverted_index.improvements. | 37 |
| abstract_inverted_index.InstructABSA's | 153 |
| abstract_inverted_index.generalization | 118 |
| abstract_inverted_index.state-of-the-art | 55, 76 |
| abstract_inverted_index.Classification(ATSC) | 63 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 6 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/4 |
| sustainable_development_goals[0].score | 0.7799999713897705 |
| sustainable_development_goals[0].display_name | Quality Education |
| citation_normalized_percentile |