Instruction Tuned Models are Quick Learners Article Swipe
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2306.05539
Instruction tuning of language models has demonstrated the ability to enhance model generalization to unseen tasks via in-context learning using a few examples. However, typical supervised learning still requires a plethora of downstream training data for finetuning. Often in real-world situations, there is a scarcity of data available for finetuning, falling somewhere between few shot inference and fully supervised finetuning. In this work, we demonstrate the sample efficiency of instruction tuned models over various tasks by estimating the minimal downstream training data required by them to perform transfer learning and match the performance of state-of-the-art (SOTA) supervised models. We conduct experiments on 119 tasks from Super Natural Instructions (SuperNI) in both the single task learning (STL) and multi task learning (MTL) settings. Our findings reveal that, in the STL setting, instruction tuned models equipped with 25% of the downstream train data surpass the SOTA performance on the downstream tasks. In the MTL setting, an instruction tuned model trained on only 6% of downstream training data achieve SOTA, while using 100% of the training data results in a 3.69% points improvement (ROUGE-L 74.68) over the previous SOTA. We conduct an analysis on T5 vs Tk-Instruct by developing several baselines to demonstrate that instruction tuning aids in increasing both sample efficiency and transfer learning. Additionally, we observe a consistent ~4% performance increase in both settings when pre-finetuning is performed with instructions. Finally, we conduct a categorical study and find that contrary to previous results, tasks in the question rewriting and title generation categories suffer from instruction tuning.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2306.05539
- https://arxiv.org/pdf/2306.05539
- OA Status
- green
- Cited By
- 3
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4380352309
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4380352309Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2306.05539Digital Object Identifier
- Title
-
Instruction Tuned Models are Quick LearnersWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-05-17Full publication date if available
- Authors
-
Himanshu Gupta, Saurabh Arjun Sawant, Swaroop Mishra, Mutsumi Nakamura, Arindam Mitra, Santosh Mashetty, Chitta BaralList of authors in order
- Landing page
-
https://arxiv.org/abs/2306.05539Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2306.05539Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2306.05539Direct OA link when available
- Concepts
-
Computer science, Inference, Machine learning, Artificial intelligence, Transfer of learning, Generalization, Task (project management), Context (archaeology), Leverage (statistics), Labeled data, Mathematics, Biology, Management, Mathematical analysis, Paleontology, EconomicsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
3Total citation count in OpenAlex
- Citations by year (recent)
-
2024: 2, 2023: 1Per-year citation counts (last 5 years)
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4380352309 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2306.05539 |
| ids.doi | https://doi.org/10.48550/arxiv.2306.05539 |
| ids.openalex | https://openalex.org/W4380352309 |
| fwci | |
| type | preprint |
| title | Instruction Tuned Models are Quick Learners |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10028 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9994000196456909 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Topic Modeling |
| topics[1].id | https://openalex.org/T10181 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9940000176429749 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | Natural Language Processing Techniques |
| topics[2].id | https://openalex.org/T11714 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9362000226974487 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1707 |
| topics[2].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[2].display_name | Multimodal Machine Learning Applications |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.7984700798988342 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C2776214188 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6483489274978638 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q408386 |
| concepts[1].display_name | Inference |
| concepts[2].id | https://openalex.org/C119857082 |
| concepts[2].level | 1 |
| concepts[2].score | 0.6425886154174805 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[2].display_name | Machine learning |
| concepts[3].id | https://openalex.org/C154945302 |
| concepts[3].level | 1 |
| concepts[3].score | 0.633297324180603 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[3].display_name | Artificial intelligence |
| concepts[4].id | https://openalex.org/C150899416 |
| concepts[4].level | 2 |
| concepts[4].score | 0.6054304838180542 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q1820378 |
| concepts[4].display_name | Transfer of learning |
| concepts[5].id | https://openalex.org/C177148314 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5552920699119568 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q170084 |
| concepts[5].display_name | Generalization |
| concepts[6].id | https://openalex.org/C2780451532 |
| concepts[6].level | 2 |
| concepts[6].score | 0.5417635440826416 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q759676 |
| concepts[6].display_name | Task (project management) |
| concepts[7].id | https://openalex.org/C2779343474 |
| concepts[7].level | 2 |
| concepts[7].score | 0.5093830823898315 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q3109175 |
| concepts[7].display_name | Context (archaeology) |
| concepts[8].id | https://openalex.org/C153083717 |
| concepts[8].level | 2 |
| concepts[8].score | 0.4568342864513397 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q6535263 |
| concepts[8].display_name | Leverage (statistics) |
| concepts[9].id | https://openalex.org/C2776145971 |
| concepts[9].level | 2 |
| concepts[9].score | 0.418388694524765 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q30673951 |
| concepts[9].display_name | Labeled data |
| concepts[10].id | https://openalex.org/C33923547 |
| concepts[10].level | 0 |
| concepts[10].score | 0.0 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[10].display_name | Mathematics |
| concepts[11].id | https://openalex.org/C86803240 |
| concepts[11].level | 0 |
| concepts[11].score | 0.0 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q420 |
| concepts[11].display_name | Biology |
| concepts[12].id | https://openalex.org/C187736073 |
| concepts[12].level | 1 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q2920921 |
| concepts[12].display_name | Management |
| concepts[13].id | https://openalex.org/C134306372 |
| concepts[13].level | 1 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q7754 |
| concepts[13].display_name | Mathematical analysis |
| concepts[14].id | https://openalex.org/C151730666 |
| concepts[14].level | 1 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q7205 |
| concepts[14].display_name | Paleontology |
| concepts[15].id | https://openalex.org/C162324750 |
| concepts[15].level | 0 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q8134 |
| concepts[15].display_name | Economics |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.7984700798988342 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/inference |
| keywords[1].score | 0.6483489274978638 |
| keywords[1].display_name | Inference |
| keywords[2].id | https://openalex.org/keywords/machine-learning |
| keywords[2].score | 0.6425886154174805 |
| keywords[2].display_name | Machine learning |
| keywords[3].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[3].score | 0.633297324180603 |
| keywords[3].display_name | Artificial intelligence |
| keywords[4].id | https://openalex.org/keywords/transfer-of-learning |
| keywords[4].score | 0.6054304838180542 |
| keywords[4].display_name | Transfer of learning |
| keywords[5].id | https://openalex.org/keywords/generalization |
| keywords[5].score | 0.5552920699119568 |
| keywords[5].display_name | Generalization |
| keywords[6].id | https://openalex.org/keywords/task |
| keywords[6].score | 0.5417635440826416 |
| keywords[6].display_name | Task (project management) |
| keywords[7].id | https://openalex.org/keywords/context |
| keywords[7].score | 0.5093830823898315 |
| keywords[7].display_name | Context (archaeology) |
| keywords[8].id | https://openalex.org/keywords/leverage |
| keywords[8].score | 0.4568342864513397 |
| keywords[8].display_name | Leverage (statistics) |
| keywords[9].id | https://openalex.org/keywords/labeled-data |
| keywords[9].score | 0.418388694524765 |
| keywords[9].display_name | Labeled data |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2306.05539 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2306.05539 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2306.05539 |
| locations[1].id | doi:10.48550/arxiv.2306.05539 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2306.05539 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5107117896 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-3537-2202 |
| authorships[0].author.display_name | Himanshu Gupta |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Gupta, Himanshu |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5080454694 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Saurabh Arjun Sawant |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Sawant, Saurabh Arjun |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5063722751 |
| authorships[2].author.orcid | https://orcid.org/0009-0001-6413-7001 |
| authorships[2].author.display_name | Swaroop Mishra |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Mishra, Swaroop |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5005048088 |
| authorships[3].author.orcid | |
| authorships[3].author.display_name | Mutsumi Nakamura |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Nakamura, Mutsumi |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5101651425 |
| authorships[4].author.orcid | https://orcid.org/0000-0003-0089-510X |
| authorships[4].author.display_name | Arindam Mitra |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Mitra, Arindam |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5092145371 |
| authorships[5].author.orcid | |
| authorships[5].author.display_name | Santosh Mashetty |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Mashetty, Santosh |
| authorships[5].is_corresponding | False |
| authorships[6].author.id | https://openalex.org/A5083735830 |
| authorships[6].author.orcid | https://orcid.org/0000-0002-7549-723X |
| authorships[6].author.display_name | Chitta Baral |
| authorships[6].author_position | last |
| authorships[6].raw_author_name | Baral, Chitta |
| authorships[6].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2306.05539 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2023-06-13T00:00:00 |
| display_name | Instruction Tuned Models are Quick Learners |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10028 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9994000196456909 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Topic Modeling |
| related_works | https://openalex.org/W4379251913, https://openalex.org/W4297821278, https://openalex.org/W2129767422, https://openalex.org/W3210196349, https://openalex.org/W4214728004, https://openalex.org/W2950181282, https://openalex.org/W2963261224, https://openalex.org/W2798287483, https://openalex.org/W2913410650, https://openalex.org/W3193920202 |
| cited_by_count | 3 |
| counts_by_year[0].year | 2024 |
| counts_by_year[0].cited_by_count | 2 |
| counts_by_year[1].year | 2023 |
| counts_by_year[1].cited_by_count | 1 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2306.05539 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2306.05539 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2306.05539 |
| primary_location.id | pmh:oai:arXiv.org:2306.05539 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2306.05539 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2306.05539 |
| publication_date | 2023-05-17 |
| publication_year | 2023 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 20, 29, 43, 176, 215, 232 |
| abstract_inverted_index.6% | 160 |
| abstract_inverted_index.In | 60, 149 |
| abstract_inverted_index.T5 | 191 |
| abstract_inverted_index.We | 98, 186 |
| abstract_inverted_index.an | 153, 188 |
| abstract_inverted_index.by | 75, 83, 194 |
| abstract_inverted_index.in | 38, 109, 126, 175, 204, 220, 243 |
| abstract_inverted_index.is | 42, 225 |
| abstract_inverted_index.of | 2, 31, 45, 68, 93, 136, 161, 170 |
| abstract_inverted_index.on | 101, 145, 158, 190 |
| abstract_inverted_index.to | 9, 13, 85, 198, 239 |
| abstract_inverted_index.vs | 192 |
| abstract_inverted_index.we | 63, 213, 230 |
| abstract_inverted_index.119 | 102 |
| abstract_inverted_index.25% | 135 |
| abstract_inverted_index.MTL | 151 |
| abstract_inverted_index.Our | 122 |
| abstract_inverted_index.STL | 128 |
| abstract_inverted_index.and | 56, 89, 116, 209, 235, 247 |
| abstract_inverted_index.few | 21, 53 |
| abstract_inverted_index.for | 35, 48 |
| abstract_inverted_index.has | 5 |
| abstract_inverted_index.the | 7, 65, 77, 91, 111, 127, 137, 142, 146, 150, 171, 183, 244 |
| abstract_inverted_index.via | 16 |
| abstract_inverted_index.~4% | 217 |
| abstract_inverted_index.100% | 169 |
| abstract_inverted_index.SOTA | 143 |
| abstract_inverted_index.aids | 203 |
| abstract_inverted_index.both | 110, 206, 221 |
| abstract_inverted_index.data | 34, 46, 81, 140, 164, 173 |
| abstract_inverted_index.find | 236 |
| abstract_inverted_index.from | 104, 252 |
| abstract_inverted_index.only | 159 |
| abstract_inverted_index.over | 72, 182 |
| abstract_inverted_index.shot | 54 |
| abstract_inverted_index.task | 113, 118 |
| abstract_inverted_index.that | 200, 237 |
| abstract_inverted_index.them | 84 |
| abstract_inverted_index.this | 61 |
| abstract_inverted_index.when | 223 |
| abstract_inverted_index.with | 134, 227 |
| abstract_inverted_index.(MTL) | 120 |
| abstract_inverted_index.(STL) | 115 |
| abstract_inverted_index.3.69% | 177 |
| abstract_inverted_index.Often | 37 |
| abstract_inverted_index.SOTA, | 166 |
| abstract_inverted_index.SOTA. | 185 |
| abstract_inverted_index.Super | 105 |
| abstract_inverted_index.fully | 57 |
| abstract_inverted_index.match | 90 |
| abstract_inverted_index.model | 11, 156 |
| abstract_inverted_index.multi | 117 |
| abstract_inverted_index.still | 27 |
| abstract_inverted_index.study | 234 |
| abstract_inverted_index.tasks | 15, 74, 103, 242 |
| abstract_inverted_index.that, | 125 |
| abstract_inverted_index.there | 41 |
| abstract_inverted_index.title | 248 |
| abstract_inverted_index.train | 139 |
| abstract_inverted_index.tuned | 70, 131, 155 |
| abstract_inverted_index.using | 19, 168 |
| abstract_inverted_index.while | 167 |
| abstract_inverted_index.work, | 62 |
| abstract_inverted_index.(SOTA) | 95 |
| abstract_inverted_index.74.68) | 181 |
| abstract_inverted_index.models | 4, 71, 132 |
| abstract_inverted_index.points | 178 |
| abstract_inverted_index.reveal | 124 |
| abstract_inverted_index.sample | 66, 207 |
| abstract_inverted_index.single | 112 |
| abstract_inverted_index.suffer | 251 |
| abstract_inverted_index.tasks. | 148 |
| abstract_inverted_index.tuning | 1, 202 |
| abstract_inverted_index.unseen | 14 |
| abstract_inverted_index.Natural | 106 |
| abstract_inverted_index.ability | 8 |
| abstract_inverted_index.achieve | 165 |
| abstract_inverted_index.between | 52 |
| abstract_inverted_index.conduct | 99, 187, 231 |
| abstract_inverted_index.enhance | 10 |
| abstract_inverted_index.falling | 50 |
| abstract_inverted_index.minimal | 78 |
| abstract_inverted_index.models. | 97 |
| abstract_inverted_index.observe | 214 |
| abstract_inverted_index.perform | 86 |
| abstract_inverted_index.results | 174 |
| abstract_inverted_index.several | 196 |
| abstract_inverted_index.surpass | 141 |
| abstract_inverted_index.trained | 157 |
| abstract_inverted_index.tuning. | 254 |
| abstract_inverted_index.typical | 24 |
| abstract_inverted_index.various | 73 |
| abstract_inverted_index.(ROUGE-L | 180 |
| abstract_inverted_index.Finally, | 229 |
| abstract_inverted_index.However, | 23 |
| abstract_inverted_index.analysis | 189 |
| abstract_inverted_index.contrary | 238 |
| abstract_inverted_index.equipped | 133 |
| abstract_inverted_index.findings | 123 |
| abstract_inverted_index.increase | 219 |
| abstract_inverted_index.language | 3 |
| abstract_inverted_index.learning | 18, 26, 88, 114, 119 |
| abstract_inverted_index.plethora | 30 |
| abstract_inverted_index.previous | 184, 240 |
| abstract_inverted_index.question | 245 |
| abstract_inverted_index.required | 82 |
| abstract_inverted_index.requires | 28 |
| abstract_inverted_index.results, | 241 |
| abstract_inverted_index.scarcity | 44 |
| abstract_inverted_index.setting, | 129, 152 |
| abstract_inverted_index.settings | 222 |
| abstract_inverted_index.training | 33, 80, 163, 172 |
| abstract_inverted_index.transfer | 87, 210 |
| abstract_inverted_index.(SuperNI) | 108 |
| abstract_inverted_index.available | 47 |
| abstract_inverted_index.baselines | 197 |
| abstract_inverted_index.examples. | 22 |
| abstract_inverted_index.inference | 55 |
| abstract_inverted_index.learning. | 211 |
| abstract_inverted_index.performed | 226 |
| abstract_inverted_index.rewriting | 246 |
| abstract_inverted_index.settings. | 121 |
| abstract_inverted_index.somewhere | 51 |
| abstract_inverted_index.categories | 250 |
| abstract_inverted_index.consistent | 216 |
| abstract_inverted_index.developing | 195 |
| abstract_inverted_index.downstream | 32, 79, 138, 147, 162 |
| abstract_inverted_index.efficiency | 67, 208 |
| abstract_inverted_index.estimating | 76 |
| abstract_inverted_index.generation | 249 |
| abstract_inverted_index.in-context | 17 |
| abstract_inverted_index.increasing | 205 |
| abstract_inverted_index.real-world | 39 |
| abstract_inverted_index.supervised | 25, 58, 96 |
| abstract_inverted_index.Instruction | 0 |
| abstract_inverted_index.Tk-Instruct | 193 |
| abstract_inverted_index.categorical | 233 |
| abstract_inverted_index.demonstrate | 64, 199 |
| abstract_inverted_index.experiments | 100 |
| abstract_inverted_index.finetuning, | 49 |
| abstract_inverted_index.finetuning. | 36, 59 |
| abstract_inverted_index.improvement | 179 |
| abstract_inverted_index.instruction | 69, 130, 154, 201, 253 |
| abstract_inverted_index.performance | 92, 144, 218 |
| abstract_inverted_index.situations, | 40 |
| abstract_inverted_index.Instructions | 107 |
| abstract_inverted_index.demonstrated | 6 |
| abstract_inverted_index.Additionally, | 212 |
| abstract_inverted_index.instructions. | 228 |
| abstract_inverted_index.generalization | 12 |
| abstract_inverted_index.pre-finetuning | 224 |
| abstract_inverted_index.state-of-the-art | 94 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 7 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/4 |
| sustainable_development_goals[0].score | 0.7799999713897705 |
| sustainable_development_goals[0].display_name | Quality Education |
| citation_normalized_percentile |