Integrated Landslide Risk Assessment via a Landslide Susceptibility Model Based on Intelligent Optimization Algorithms Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.3390/rs17030545
Accurate and objective regional landslide risk assessment is crucial for the precise prevention of regional disasters. This study proposes an integrated landslide risk assessment via a landslide susceptibility model based on intelligent optimization algorithms. By simulating the process of rime frost formation, it effectively selects features and assigns weights, overcoming the overfitting issue faced by XGBoost in handling high-dimensional features. By integrating the concepts of landslide susceptibility, dynamic landslide factors, and social vulnerability, an integrated landslide risk index was developed. Further investigation was conducted on how landslide susceptibility results influence risk, identifying regions with varying levels of landslide risk due to spatial heterogeneity in geological background, natural environment, and socio-economic conditions. This study’s results demonstrate that the RIME-XGBoost landslide susceptibility model exhibits superior stability and accuracy, achieving an AUC score of 0.947, which represents an improvement of 0.064 compared to the unoptimized XGBoost model, while the accuracy shows a maximum increase of 0.15 relative to other models. Additionally, an analysis using cloud theory indicates that the model’s expectation and hyper-entropy are minimized. High-risk-level areas, constituting only 1.26% of the total area, are predominantly located in densely populated, economically developed urban regions, where roads and rivers are the key influencing factors. In contrast, low-risk areas, which cover approximately 72% of the total area, are more broadly distributed. The landslide susceptibility predictions notably influence high-risk regions with concentrated populations.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.3390/rs17030545
- OA Status
- gold
- Cited By
- 4
- References
- 74
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4407223498
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4407223498Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.3390/rs17030545Digital Object Identifier
- Title
-
Integrated Landslide Risk Assessment via a Landslide Susceptibility Model Based on Intelligent Optimization AlgorithmsWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-02-05Full publication date if available
- Authors
-
Xin Dai, Jianping Chen, Tianren Zhang, Chenli XueList of authors in order
- Landing page
-
https://doi.org/10.3390/rs17030545Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.3390/rs17030545Direct OA link when available
- Concepts
-
Landslide, Computer science, Algorithm, Geology, Geotechnical engineeringTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
4Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 4Per-year citation counts (last 5 years)
- References (count)
-
74Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4407223498 |
|---|---|
| doi | https://doi.org/10.3390/rs17030545 |
| ids.doi | https://doi.org/10.3390/rs17030545 |
| ids.openalex | https://openalex.org/W4407223498 |
| fwci | 25.57145816 |
| type | article |
| title | Integrated Landslide Risk Assessment via a Landslide Susceptibility Model Based on Intelligent Optimization Algorithms |
| biblio.issue | 3 |
| biblio.volume | 17 |
| biblio.last_page | 545 |
| biblio.first_page | 545 |
| topics[0].id | https://openalex.org/T10535 |
| topics[0].field.id | https://openalex.org/fields/23 |
| topics[0].field.display_name | Environmental Science |
| topics[0].score | 0.9812999963760376 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2308 |
| topics[0].subfield.display_name | Management, Monitoring, Policy and Law |
| topics[0].display_name | Landslides and related hazards |
| is_xpac | False |
| apc_list.value | 2500 |
| apc_list.currency | CHF |
| apc_list.value_usd | 2707 |
| apc_paid.value | 2500 |
| apc_paid.currency | CHF |
| apc_paid.value_usd | 2707 |
| concepts[0].id | https://openalex.org/C186295008 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7826228737831116 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q167903 |
| concepts[0].display_name | Landslide |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.42655321955680847 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C11413529 |
| concepts[2].level | 1 |
| concepts[2].score | 0.38285031914711 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[2].display_name | Algorithm |
| concepts[3].id | https://openalex.org/C127313418 |
| concepts[3].level | 0 |
| concepts[3].score | 0.33936652541160583 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q1069 |
| concepts[3].display_name | Geology |
| concepts[4].id | https://openalex.org/C187320778 |
| concepts[4].level | 1 |
| concepts[4].score | 0.24267348647117615 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q1349130 |
| concepts[4].display_name | Geotechnical engineering |
| keywords[0].id | https://openalex.org/keywords/landslide |
| keywords[0].score | 0.7826228737831116 |
| keywords[0].display_name | Landslide |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.42655321955680847 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/algorithm |
| keywords[2].score | 0.38285031914711 |
| keywords[2].display_name | Algorithm |
| keywords[3].id | https://openalex.org/keywords/geology |
| keywords[3].score | 0.33936652541160583 |
| keywords[3].display_name | Geology |
| keywords[4].id | https://openalex.org/keywords/geotechnical-engineering |
| keywords[4].score | 0.24267348647117615 |
| keywords[4].display_name | Geotechnical engineering |
| language | en |
| locations[0].id | doi:10.3390/rs17030545 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S43295729 |
| locations[0].source.issn | 2072-4292 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2072-4292 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Remote Sensing |
| locations[0].source.host_organization | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| locations[0].license | cc-by |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Remote Sensing |
| locations[0].landing_page_url | https://doi.org/10.3390/rs17030545 |
| locations[1].id | pmh:oai:doaj.org/article:de64d51c57d340adbcaee0fbf95136d4 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | Remote Sensing, Vol 17, Iss 3, p 545 (2025) |
| locations[1].landing_page_url | https://doaj.org/article/de64d51c57d340adbcaee0fbf95136d4 |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5040773949 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-0472-700X |
| authorships[0].author.display_name | Xin Dai |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I211433327 |
| authorships[0].affiliations[0].raw_affiliation_string | Beijing Key Laboratory of Development and Research for Land Resources Information, Beijing 100083, China |
| authorships[0].affiliations[1].institution_ids | https://openalex.org/I3125743391 |
| authorships[0].affiliations[1].raw_affiliation_string | School of Earth Sciences and Resources, China University of Geosciences, Beijing 100083, China |
| authorships[0].institutions[0].id | https://openalex.org/I3125743391 |
| authorships[0].institutions[0].ror | https://ror.org/04q6c7p66 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I3125743391 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | China University of Geosciences (Beijing) |
| authorships[0].institutions[1].id | https://openalex.org/I211433327 |
| authorships[0].institutions[1].ror | https://ror.org/02kxqx159 |
| authorships[0].institutions[1].type | government |
| authorships[0].institutions[1].lineage | https://openalex.org/I211433327, https://openalex.org/I4210127390 |
| authorships[0].institutions[1].country_code | CN |
| authorships[0].institutions[1].display_name | Ministry of Natural Resources |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Xin Dai |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Beijing Key Laboratory of Development and Research for Land Resources Information, Beijing 100083, China, School of Earth Sciences and Resources, China University of Geosciences, Beijing 100083, China |
| authorships[1].author.id | https://openalex.org/A5100437542 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-0483-9631 |
| authorships[1].author.display_name | Jianping Chen |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I211433327 |
| authorships[1].affiliations[0].raw_affiliation_string | Beijing Key Laboratory of Development and Research for Land Resources Information, Beijing 100083, China |
| authorships[1].affiliations[1].institution_ids | https://openalex.org/I3125743391 |
| authorships[1].affiliations[1].raw_affiliation_string | School of Earth Sciences and Resources, China University of Geosciences, Beijing 100083, China |
| authorships[1].institutions[0].id | https://openalex.org/I3125743391 |
| authorships[1].institutions[0].ror | https://ror.org/04q6c7p66 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I3125743391 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | China University of Geosciences (Beijing) |
| authorships[1].institutions[1].id | https://openalex.org/I211433327 |
| authorships[1].institutions[1].ror | https://ror.org/02kxqx159 |
| authorships[1].institutions[1].type | government |
| authorships[1].institutions[1].lineage | https://openalex.org/I211433327, https://openalex.org/I4210127390 |
| authorships[1].institutions[1].country_code | CN |
| authorships[1].institutions[1].display_name | Ministry of Natural Resources |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Jianping Chen |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Beijing Key Laboratory of Development and Research for Land Resources Information, Beijing 100083, China, School of Earth Sciences and Resources, China University of Geosciences, Beijing 100083, China |
| authorships[2].author.id | https://openalex.org/A5026023372 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-9687-5263 |
| authorships[2].author.display_name | Tianren Zhang |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I126520041 |
| authorships[2].affiliations[0].raw_affiliation_string | School of Energy Science and Engineering, University of Science and Technology of China, Hefei 230026, China |
| authorships[2].institutions[0].id | https://openalex.org/I126520041 |
| authorships[2].institutions[0].ror | https://ror.org/04c4dkn09 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I126520041, https://openalex.org/I19820366 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | University of Science and Technology of China |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Tianren Zhang |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | School of Energy Science and Engineering, University of Science and Technology of China, Hefei 230026, China |
| authorships[3].author.id | https://openalex.org/A5077953326 |
| authorships[3].author.orcid | |
| authorships[3].author.display_name | Chenli Xue |
| authorships[3].countries | CN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I211433327 |
| authorships[3].affiliations[0].raw_affiliation_string | Beijing Key Laboratory of Development and Research for Land Resources Information, Beijing 100083, China |
| authorships[3].affiliations[1].institution_ids | https://openalex.org/I3125743391 |
| authorships[3].affiliations[1].raw_affiliation_string | School of Earth Sciences and Resources, China University of Geosciences, Beijing 100083, China |
| authorships[3].institutions[0].id | https://openalex.org/I3125743391 |
| authorships[3].institutions[0].ror | https://ror.org/04q6c7p66 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I3125743391 |
| authorships[3].institutions[0].country_code | CN |
| authorships[3].institutions[0].display_name | China University of Geosciences (Beijing) |
| authorships[3].institutions[1].id | https://openalex.org/I211433327 |
| authorships[3].institutions[1].ror | https://ror.org/02kxqx159 |
| authorships[3].institutions[1].type | government |
| authorships[3].institutions[1].lineage | https://openalex.org/I211433327, https://openalex.org/I4210127390 |
| authorships[3].institutions[1].country_code | CN |
| authorships[3].institutions[1].display_name | Ministry of Natural Resources |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Chenli Xue |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Beijing Key Laboratory of Development and Research for Land Resources Information, Beijing 100083, China, School of Earth Sciences and Resources, China University of Geosciences, Beijing 100083, China |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.3390/rs17030545 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Integrated Landslide Risk Assessment via a Landslide Susceptibility Model Based on Intelligent Optimization Algorithms |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10535 |
| primary_topic.field.id | https://openalex.org/fields/23 |
| primary_topic.field.display_name | Environmental Science |
| primary_topic.score | 0.9812999963760376 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2308 |
| primary_topic.subfield.display_name | Management, Monitoring, Policy and Law |
| primary_topic.display_name | Landslides and related hazards |
| related_works | https://openalex.org/W4391375266, https://openalex.org/W2899084033, https://openalex.org/W2748952813, https://openalex.org/W2389676928, https://openalex.org/W3169474304, https://openalex.org/W2369104181, https://openalex.org/W3201652628, https://openalex.org/W4212972401, https://openalex.org/W2389287188, https://openalex.org/W3081499580 |
| cited_by_count | 4 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 4 |
| locations_count | 2 |
| best_oa_location.id | doi:10.3390/rs17030545 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S43295729 |
| best_oa_location.source.issn | 2072-4292 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2072-4292 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Remote Sensing |
| best_oa_location.source.host_organization | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Remote Sensing |
| best_oa_location.landing_page_url | https://doi.org/10.3390/rs17030545 |
| primary_location.id | doi:10.3390/rs17030545 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S43295729 |
| primary_location.source.issn | 2072-4292 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2072-4292 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Remote Sensing |
| primary_location.source.host_organization | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| primary_location.license | cc-by |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Remote Sensing |
| primary_location.landing_page_url | https://doi.org/10.3390/rs17030545 |
| publication_date | 2025-02-05 |
| publication_year | 2025 |
| referenced_works | https://openalex.org/W4388463653, https://openalex.org/W4220744056, https://openalex.org/W4392191958, https://openalex.org/W2134955829, https://openalex.org/W2789555074, https://openalex.org/W6848734648, https://openalex.org/W6731142735, https://openalex.org/W2886921390, https://openalex.org/W3044636903, https://openalex.org/W2792546905, https://openalex.org/W2567326027, https://openalex.org/W4390340981, https://openalex.org/W3125389830, https://openalex.org/W4386329467, https://openalex.org/W4206076921, https://openalex.org/W2528753685, https://openalex.org/W2784641798, https://openalex.org/W2065949495, https://openalex.org/W2990262107, https://openalex.org/W3004202498, https://openalex.org/W6852099930, https://openalex.org/W3014673353, https://openalex.org/W4318817650, https://openalex.org/W4313420531, https://openalex.org/W4377101038, https://openalex.org/W4392596386, https://openalex.org/W4319788201, https://openalex.org/W3112585178, https://openalex.org/W2793831793, https://openalex.org/W3111588349, https://openalex.org/W2953959218, https://openalex.org/W6885432717, https://openalex.org/W4320487090, https://openalex.org/W4404503681, https://openalex.org/W6870538694, https://openalex.org/W2897411808, https://openalex.org/W4220663096, https://openalex.org/W4280649018, https://openalex.org/W4390499842, https://openalex.org/W3209600337, https://openalex.org/W4313544709, https://openalex.org/W4387759199, https://openalex.org/W4318683761, https://openalex.org/W6778103986, https://openalex.org/W3080433234, https://openalex.org/W4391309731, https://openalex.org/W4399974883, https://openalex.org/W4380789074, https://openalex.org/W4401325496, https://openalex.org/W4401704859, https://openalex.org/W3188524028, https://openalex.org/W2809487374, https://openalex.org/W4400188586, https://openalex.org/W3178683332, https://openalex.org/W4388059795, https://openalex.org/W4319758596, https://openalex.org/W4283275100, https://openalex.org/W2941679512, https://openalex.org/W2971897573, https://openalex.org/W4226143991, https://openalex.org/W4386220281, https://openalex.org/W4290768241, https://openalex.org/W4318305691, https://openalex.org/W4388095264, https://openalex.org/W2896483523, https://openalex.org/W2295598076, https://openalex.org/W2158698691, https://openalex.org/W4391855042, https://openalex.org/W4386348190, https://openalex.org/W3088887250, https://openalex.org/W2903721734, https://openalex.org/W2770617885, https://openalex.org/W3010524386, https://openalex.org/W2989641579 |
| referenced_works_count | 74 |
| abstract_inverted_index.a | 25, 148 |
| abstract_inverted_index.By | 34, 60 |
| abstract_inverted_index.In | 200 |
| abstract_inverted_index.an | 19, 73, 127, 134, 158 |
| abstract_inverted_index.by | 54 |
| abstract_inverted_index.in | 56, 103, 184 |
| abstract_inverted_index.is | 7 |
| abstract_inverted_index.it | 42 |
| abstract_inverted_index.of | 13, 38, 64, 96, 130, 136, 151, 177, 208 |
| abstract_inverted_index.on | 30, 84 |
| abstract_inverted_index.to | 100, 139, 154 |
| abstract_inverted_index.72% | 207 |
| abstract_inverted_index.AUC | 128 |
| abstract_inverted_index.The | 216 |
| abstract_inverted_index.and | 1, 46, 70, 108, 124, 168, 193 |
| abstract_inverted_index.are | 170, 181, 195, 212 |
| abstract_inverted_index.due | 99 |
| abstract_inverted_index.for | 9 |
| abstract_inverted_index.how | 85 |
| abstract_inverted_index.key | 197 |
| abstract_inverted_index.the | 10, 36, 50, 62, 116, 140, 145, 165, 178, 196, 209 |
| abstract_inverted_index.via | 24 |
| abstract_inverted_index.was | 78, 82 |
| abstract_inverted_index.0.15 | 152 |
| abstract_inverted_index.This | 16, 111 |
| abstract_inverted_index.more | 213 |
| abstract_inverted_index.only | 175 |
| abstract_inverted_index.rime | 39 |
| abstract_inverted_index.risk | 5, 22, 76, 98 |
| abstract_inverted_index.that | 115, 164 |
| abstract_inverted_index.with | 93, 224 |
| abstract_inverted_index.0.064 | 137 |
| abstract_inverted_index.1.26% | 176 |
| abstract_inverted_index.area, | 180, 211 |
| abstract_inverted_index.based | 29 |
| abstract_inverted_index.cloud | 161 |
| abstract_inverted_index.cover | 205 |
| abstract_inverted_index.faced | 53 |
| abstract_inverted_index.frost | 40 |
| abstract_inverted_index.index | 77 |
| abstract_inverted_index.issue | 52 |
| abstract_inverted_index.model | 28, 120 |
| abstract_inverted_index.other | 155 |
| abstract_inverted_index.risk, | 90 |
| abstract_inverted_index.roads | 192 |
| abstract_inverted_index.score | 129 |
| abstract_inverted_index.shows | 147 |
| abstract_inverted_index.study | 17 |
| abstract_inverted_index.total | 179, 210 |
| abstract_inverted_index.urban | 189 |
| abstract_inverted_index.using | 160 |
| abstract_inverted_index.where | 191 |
| abstract_inverted_index.which | 132, 204 |
| abstract_inverted_index.while | 144 |
| abstract_inverted_index.0.947, | 131 |
| abstract_inverted_index.areas, | 173, 203 |
| abstract_inverted_index.levels | 95 |
| abstract_inverted_index.model, | 143 |
| abstract_inverted_index.rivers | 194 |
| abstract_inverted_index.social | 71 |
| abstract_inverted_index.theory | 162 |
| abstract_inverted_index.Further | 80 |
| abstract_inverted_index.XGBoost | 55, 142 |
| abstract_inverted_index.assigns | 47 |
| abstract_inverted_index.broadly | 214 |
| abstract_inverted_index.crucial | 8 |
| abstract_inverted_index.densely | 185 |
| abstract_inverted_index.dynamic | 67 |
| abstract_inverted_index.located | 183 |
| abstract_inverted_index.maximum | 149 |
| abstract_inverted_index.models. | 156 |
| abstract_inverted_index.natural | 106 |
| abstract_inverted_index.notably | 220 |
| abstract_inverted_index.precise | 11 |
| abstract_inverted_index.process | 37 |
| abstract_inverted_index.regions | 92, 223 |
| abstract_inverted_index.results | 88, 113 |
| abstract_inverted_index.selects | 44 |
| abstract_inverted_index.spatial | 101 |
| abstract_inverted_index.varying | 94 |
| abstract_inverted_index.Accurate | 0 |
| abstract_inverted_index.accuracy | 146 |
| abstract_inverted_index.analysis | 159 |
| abstract_inverted_index.compared | 138 |
| abstract_inverted_index.concepts | 63 |
| abstract_inverted_index.exhibits | 121 |
| abstract_inverted_index.factors, | 69 |
| abstract_inverted_index.factors. | 199 |
| abstract_inverted_index.features | 45 |
| abstract_inverted_index.handling | 57 |
| abstract_inverted_index.increase | 150 |
| abstract_inverted_index.low-risk | 202 |
| abstract_inverted_index.proposes | 18 |
| abstract_inverted_index.regional | 3, 14 |
| abstract_inverted_index.regions, | 190 |
| abstract_inverted_index.relative | 153 |
| abstract_inverted_index.superior | 122 |
| abstract_inverted_index.weights, | 48 |
| abstract_inverted_index.accuracy, | 125 |
| abstract_inverted_index.achieving | 126 |
| abstract_inverted_index.conducted | 83 |
| abstract_inverted_index.contrast, | 201 |
| abstract_inverted_index.developed | 188 |
| abstract_inverted_index.features. | 59 |
| abstract_inverted_index.high-risk | 222 |
| abstract_inverted_index.indicates | 163 |
| abstract_inverted_index.influence | 89, 221 |
| abstract_inverted_index.landslide | 4, 21, 26, 65, 68, 75, 86, 97, 118, 217 |
| abstract_inverted_index.model’s | 166 |
| abstract_inverted_index.objective | 2 |
| abstract_inverted_index.stability | 123 |
| abstract_inverted_index.study’s | 112 |
| abstract_inverted_index.assessment | 6, 23 |
| abstract_inverted_index.developed. | 79 |
| abstract_inverted_index.disasters. | 15 |
| abstract_inverted_index.formation, | 41 |
| abstract_inverted_index.geological | 104 |
| abstract_inverted_index.integrated | 20, 74 |
| abstract_inverted_index.minimized. | 171 |
| abstract_inverted_index.overcoming | 49 |
| abstract_inverted_index.populated, | 186 |
| abstract_inverted_index.prevention | 12 |
| abstract_inverted_index.represents | 133 |
| abstract_inverted_index.simulating | 35 |
| abstract_inverted_index.algorithms. | 33 |
| abstract_inverted_index.background, | 105 |
| abstract_inverted_index.conditions. | 110 |
| abstract_inverted_index.demonstrate | 114 |
| abstract_inverted_index.effectively | 43 |
| abstract_inverted_index.expectation | 167 |
| abstract_inverted_index.identifying | 91 |
| abstract_inverted_index.improvement | 135 |
| abstract_inverted_index.influencing | 198 |
| abstract_inverted_index.integrating | 61 |
| abstract_inverted_index.intelligent | 31 |
| abstract_inverted_index.overfitting | 51 |
| abstract_inverted_index.predictions | 219 |
| abstract_inverted_index.unoptimized | 141 |
| abstract_inverted_index.RIME-XGBoost | 117 |
| abstract_inverted_index.concentrated | 225 |
| abstract_inverted_index.constituting | 174 |
| abstract_inverted_index.distributed. | 215 |
| abstract_inverted_index.economically | 187 |
| abstract_inverted_index.environment, | 107 |
| abstract_inverted_index.optimization | 32 |
| abstract_inverted_index.populations. | 226 |
| abstract_inverted_index.Additionally, | 157 |
| abstract_inverted_index.approximately | 206 |
| abstract_inverted_index.heterogeneity | 102 |
| abstract_inverted_index.hyper-entropy | 169 |
| abstract_inverted_index.investigation | 81 |
| abstract_inverted_index.predominantly | 182 |
| abstract_inverted_index.socio-economic | 109 |
| abstract_inverted_index.susceptibility | 27, 87, 119, 218 |
| abstract_inverted_index.vulnerability, | 72 |
| abstract_inverted_index.High-risk-level | 172 |
| abstract_inverted_index.susceptibility, | 66 |
| abstract_inverted_index.high-dimensional | 58 |
| cited_by_percentile_year.max | 98 |
| cited_by_percentile_year.min | 97 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 4 |
| citation_normalized_percentile.value | 0.98229248 |
| citation_normalized_percentile.is_in_top_1_percent | True |
| citation_normalized_percentile.is_in_top_10_percent | True |