Integrating AI and Semantic Web Technologies for Robust Phishing Detection in Virtual Realities Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.4018/ijswis.371415
Phishing detection is a critical challenge in virtual realities, where malicious activities can compromise user security. This paper presents a novel approach integrating AI and Semantic Web Technologies for robust phishing detection. The proposed model preprocesses text data and leverages a reduced six-layer BERT encoder to extract contextual embeddings. Outputs from BERT, including classifier, attention, and encoder layers, are combined with features derived from Semantic Web Technologies and a custom deep learning layer to form a unified representation. The concatenated features are passed to a linear layer for classification. Experiments demonstrate superior performance, achieving 95\% accuracy, 96\% F1-score, and a 0.99 ROC-AUC, outperforming standard machine learning models. This framework provides a reliable phishing detection solution for virtual environments.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.4018/ijswis.371415
- https://www.igi-global.com/ViewTitle.aspx?TitleId=371415&isxn=9798337311630
- OA Status
- diamond
- Cited By
- 3
- References
- 13
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4408434153
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4408434153Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.4018/ijswis.371415Digital Object Identifier
- Title
-
Integrating AI and Semantic Web Technologies for Robust Phishing Detection in Virtual RealitiesWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-03-14Full publication date if available
- Authors
-
Liang Zhou, Akshat Gaurav, Wadee Alhalabi, Varsha Arya, Eaman AlharbiList of authors in order
- Landing page
-
https://doi.org/10.4018/ijswis.371415Publisher landing page
- PDF URL
-
https://www.igi-global.com/ViewTitle.aspx?TitleId=371415&isxn=9798337311630Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
diamondOpen access status per OpenAlex
- OA URL
-
https://www.igi-global.com/ViewTitle.aspx?TitleId=371415&isxn=9798337311630Direct OA link when available
- Concepts
-
Computer science, Phishing, World Wide Web, Semantic Web, Social Semantic Web, Information retrieval, The InternetTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
3Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 3Per-year citation counts (last 5 years)
- References (count)
-
13Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4408434153 |
|---|---|
| doi | https://doi.org/10.4018/ijswis.371415 |
| ids.doi | https://doi.org/10.4018/ijswis.371415 |
| ids.openalex | https://openalex.org/W4408434153 |
| fwci | 28.99101974 |
| type | article |
| title | Integrating AI and Semantic Web Technologies for Robust Phishing Detection in Virtual Realities |
| biblio.issue | 1 |
| biblio.volume | 21 |
| biblio.last_page | 19 |
| biblio.first_page | 1 |
| topics[0].id | https://openalex.org/T11644 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 1.0 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1710 |
| topics[0].subfield.display_name | Information Systems |
| topics[0].display_name | Spam and Phishing Detection |
| topics[1].id | https://openalex.org/T10664 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9976999759674072 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | Sentiment Analysis and Opinion Mining |
| topics[2].id | https://openalex.org/T11147 |
| topics[2].field.id | https://openalex.org/fields/33 |
| topics[2].field.display_name | Social Sciences |
| topics[2].score | 0.9965999722480774 |
| topics[2].domain.id | https://openalex.org/domains/2 |
| topics[2].domain.display_name | Social Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/3312 |
| topics[2].subfield.display_name | Sociology and Political Science |
| topics[2].display_name | Misinformation and Its Impacts |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.7730027437210083 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C83860907 |
| concepts[1].level | 3 |
| concepts[1].score | 0.6999400854110718 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q135005 |
| concepts[1].display_name | Phishing |
| concepts[2].id | https://openalex.org/C136764020 |
| concepts[2].level | 1 |
| concepts[2].score | 0.5662288665771484 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q466 |
| concepts[2].display_name | World Wide Web |
| concepts[3].id | https://openalex.org/C2129575 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5272079110145569 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q54837 |
| concepts[3].display_name | Semantic Web |
| concepts[4].id | https://openalex.org/C534406577 |
| concepts[4].level | 3 |
| concepts[4].score | 0.47623661160469055 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q7550843 |
| concepts[4].display_name | Social Semantic Web |
| concepts[5].id | https://openalex.org/C23123220 |
| concepts[5].level | 1 |
| concepts[5].score | 0.4118732511997223 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q816826 |
| concepts[5].display_name | Information retrieval |
| concepts[6].id | https://openalex.org/C110875604 |
| concepts[6].level | 2 |
| concepts[6].score | 0.2999606132507324 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q75 |
| concepts[6].display_name | The Internet |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.7730027437210083 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/phishing |
| keywords[1].score | 0.6999400854110718 |
| keywords[1].display_name | Phishing |
| keywords[2].id | https://openalex.org/keywords/world-wide-web |
| keywords[2].score | 0.5662288665771484 |
| keywords[2].display_name | World Wide Web |
| keywords[3].id | https://openalex.org/keywords/semantic-web |
| keywords[3].score | 0.5272079110145569 |
| keywords[3].display_name | Semantic Web |
| keywords[4].id | https://openalex.org/keywords/social-semantic-web |
| keywords[4].score | 0.47623661160469055 |
| keywords[4].display_name | Social Semantic Web |
| keywords[5].id | https://openalex.org/keywords/information-retrieval |
| keywords[5].score | 0.4118732511997223 |
| keywords[5].display_name | Information retrieval |
| keywords[6].id | https://openalex.org/keywords/the-internet |
| keywords[6].score | 0.2999606132507324 |
| keywords[6].display_name | The Internet |
| language | en |
| locations[0].id | doi:10.4018/ijswis.371415 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S181240966 |
| locations[0].source.issn | 1552-6283, 1552-6291 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 1552-6283 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | International Journal on Semantic Web and Information Systems |
| locations[0].source.host_organization | https://openalex.org/P4310320424 |
| locations[0].source.host_organization_name | IGI Global |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320424 |
| locations[0].source.host_organization_lineage_names | IGI Global |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://www.igi-global.com/ViewTitle.aspx?TitleId=371415&isxn=9798337311630 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | International Journal on Semantic Web and Information Systems |
| locations[0].landing_page_url | https://doi.org/10.4018/ijswis.371415 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5101543507 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-5957-2674 |
| authorships[0].author.display_name | Liang Zhou |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I4210088329, https://openalex.org/I4210135985 |
| authorships[0].affiliations[0].raw_affiliation_string | Jiading District Central Hospital, Shanghai University of Medicine and Health Sciences, Shanghai, China |
| authorships[0].institutions[0].id | https://openalex.org/I4210088329 |
| authorships[0].institutions[0].ror | https://ror.org/004j26v17 |
| authorships[0].institutions[0].type | healthcare |
| authorships[0].institutions[0].lineage | https://openalex.org/I4210088329 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Jiading District Central Hospital |
| authorships[0].institutions[1].id | https://openalex.org/I4210135985 |
| authorships[0].institutions[1].ror | https://ror.org/03ns6aq57 |
| authorships[0].institutions[1].type | education |
| authorships[0].institutions[1].lineage | https://openalex.org/I4210135985 |
| authorships[0].institutions[1].country_code | CN |
| authorships[0].institutions[1].display_name | Shanghai University of Medicine and Health Sciences |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Liang Zhou |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Jiading District Central Hospital, Shanghai University of Medicine and Health Sciences, Shanghai, China |
| authorships[1].author.id | https://openalex.org/A5042846465 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-5796-9424 |
| authorships[1].author.display_name | Akshat Gaurav |
| authorships[1].countries | US |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I4210147267 |
| authorships[1].affiliations[0].raw_affiliation_string | Ronin Institute, USA |
| authorships[1].institutions[0].id | https://openalex.org/I4210147267 |
| authorships[1].institutions[0].ror | https://ror.org/04awze035 |
| authorships[1].institutions[0].type | nonprofit |
| authorships[1].institutions[0].lineage | https://openalex.org/I4210147267 |
| authorships[1].institutions[0].country_code | US |
| authorships[1].institutions[0].display_name | Ronin Institute |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Akshat Gaurav |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Ronin Institute, USA |
| authorships[2].author.id | https://openalex.org/A5058545850 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-4505-7268 |
| authorships[2].author.display_name | Wadee Alhalabi |
| authorships[2].countries | SA |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I185163786 |
| authorships[2].affiliations[0].raw_affiliation_string | Department of Computer Science, Immersive Virtual Reality Research Group, King Abdulaziz University, Jeddah, Saudi Arabia |
| authorships[2].institutions[0].id | https://openalex.org/I185163786 |
| authorships[2].institutions[0].ror | https://ror.org/02ma4wv74 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I185163786 |
| authorships[2].institutions[0].country_code | SA |
| authorships[2].institutions[0].display_name | King Abdulaziz University |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Wadee Alhalabi Alhalabi |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Department of Computer Science, Immersive Virtual Reality Research Group, King Abdulaziz University, Jeddah, Saudi Arabia |
| authorships[3].author.id | https://openalex.org/A5086803967 |
| authorships[3].author.orcid | https://orcid.org/0000-0001-7549-4429 |
| authorships[3].author.display_name | Varsha Arya |
| authorships[3].countries | IN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I5847235 |
| authorships[3].affiliations[0].raw_affiliation_string | Hong Kong Metropolitan University, Hong Kong & Center for Interdisciplinary Research, University of Petroleum and Energy Studies (UPES), Dehradun, India |
| authorships[3].institutions[0].id | https://openalex.org/I5847235 |
| authorships[3].institutions[0].ror | https://ror.org/04q2jes40 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I5847235 |
| authorships[3].institutions[0].country_code | IN |
| authorships[3].institutions[0].display_name | University of Petroleum and Energy Studies |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Varsha Arya |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Hong Kong Metropolitan University, Hong Kong & Center for Interdisciplinary Research, University of Petroleum and Energy Studies (UPES), Dehradun, India |
| authorships[4].author.id | https://openalex.org/A5085054121 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-7970-3248 |
| authorships[4].author.display_name | Eaman Alharbi |
| authorships[4].countries | SA |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I185163786 |
| authorships[4].affiliations[0].raw_affiliation_string | Department of Computer Science, Faculty of Computing and Information Technology, King Abdulaziz University, Jeddah, Saudi Arabia |
| authorships[4].institutions[0].id | https://openalex.org/I185163786 |
| authorships[4].institutions[0].ror | https://ror.org/02ma4wv74 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I185163786 |
| authorships[4].institutions[0].country_code | SA |
| authorships[4].institutions[0].display_name | King Abdulaziz University |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Eaman Alharbi |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Department of Computer Science, Faculty of Computing and Information Technology, King Abdulaziz University, Jeddah, Saudi Arabia |
| has_content.pdf | True |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.igi-global.com/ViewTitle.aspx?TitleId=371415&isxn=9798337311630 |
| open_access.oa_status | diamond |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Integrating AI and Semantic Web Technologies for Robust Phishing Detection in Virtual Realities |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11644 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 1.0 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1710 |
| primary_topic.subfield.display_name | Information Systems |
| primary_topic.display_name | Spam and Phishing Detection |
| related_works | https://openalex.org/W2416704114, https://openalex.org/W2349698472, https://openalex.org/W1975429881, https://openalex.org/W2366430559, https://openalex.org/W2025728896, https://openalex.org/W2013055153, https://openalex.org/W1985801232, https://openalex.org/W2492343894, https://openalex.org/W2333894209, https://openalex.org/W65665365 |
| cited_by_count | 3 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 3 |
| locations_count | 1 |
| best_oa_location.id | doi:10.4018/ijswis.371415 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S181240966 |
| best_oa_location.source.issn | 1552-6283, 1552-6291 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 1552-6283 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | International Journal on Semantic Web and Information Systems |
| best_oa_location.source.host_organization | https://openalex.org/P4310320424 |
| best_oa_location.source.host_organization_name | IGI Global |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310320424 |
| best_oa_location.source.host_organization_lineage_names | IGI Global |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://www.igi-global.com/ViewTitle.aspx?TitleId=371415&isxn=9798337311630 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | International Journal on Semantic Web and Information Systems |
| best_oa_location.landing_page_url | https://doi.org/10.4018/ijswis.371415 |
| primary_location.id | doi:10.4018/ijswis.371415 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S181240966 |
| primary_location.source.issn | 1552-6283, 1552-6291 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 1552-6283 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | International Journal on Semantic Web and Information Systems |
| primary_location.source.host_organization | https://openalex.org/P4310320424 |
| primary_location.source.host_organization_name | IGI Global |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320424 |
| primary_location.source.host_organization_lineage_names | IGI Global |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://www.igi-global.com/ViewTitle.aspx?TitleId=371415&isxn=9798337311630 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | International Journal on Semantic Web and Information Systems |
| primary_location.landing_page_url | https://doi.org/10.4018/ijswis.371415 |
| publication_date | 2025-03-14 |
| publication_year | 2025 |
| referenced_works | https://openalex.org/W4385445308, https://openalex.org/W4385415298, https://openalex.org/W4213287278, https://openalex.org/W4398209855, https://openalex.org/W4404408013, https://openalex.org/W3208995163, https://openalex.org/W1507740920, https://openalex.org/W4289260655, https://openalex.org/W4200218072, https://openalex.org/W2041702849, https://openalex.org/W2783674026, https://openalex.org/W3041247367, https://openalex.org/W4404858069 |
| referenced_works_count | 13 |
| abstract_inverted_index.a | 3, 19, 40, 68, 75, 84, 99, 110 |
| abstract_inverted_index.AI | 23 |
| abstract_inverted_index.in | 6 |
| abstract_inverted_index.is | 2 |
| abstract_inverted_index.to | 45, 73, 83 |
| abstract_inverted_index.The | 32, 78 |
| abstract_inverted_index.Web | 26, 65 |
| abstract_inverted_index.and | 24, 38, 55, 67, 98 |
| abstract_inverted_index.are | 58, 81 |
| abstract_inverted_index.can | 12 |
| abstract_inverted_index.for | 28, 87, 115 |
| abstract_inverted_index.0.99 | 100 |
| abstract_inverted_index.95\% | 94 |
| abstract_inverted_index.96\% | 96 |
| abstract_inverted_index.BERT | 43 |
| abstract_inverted_index.This | 16, 107 |
| abstract_inverted_index.data | 37 |
| abstract_inverted_index.deep | 70 |
| abstract_inverted_index.form | 74 |
| abstract_inverted_index.from | 50, 63 |
| abstract_inverted_index.text | 36 |
| abstract_inverted_index.user | 14 |
| abstract_inverted_index.with | 60 |
| abstract_inverted_index.BERT, | 51 |
| abstract_inverted_index.layer | 72, 86 |
| abstract_inverted_index.model | 34 |
| abstract_inverted_index.novel | 20 |
| abstract_inverted_index.paper | 17 |
| abstract_inverted_index.where | 9 |
| abstract_inverted_index.custom | 69 |
| abstract_inverted_index.linear | 85 |
| abstract_inverted_index.passed | 82 |
| abstract_inverted_index.robust | 29 |
| abstract_inverted_index.Outputs | 49 |
| abstract_inverted_index.derived | 62 |
| abstract_inverted_index.encoder | 44, 56 |
| abstract_inverted_index.extract | 46 |
| abstract_inverted_index.layers, | 57 |
| abstract_inverted_index.machine | 104 |
| abstract_inverted_index.models. | 106 |
| abstract_inverted_index.reduced | 41 |
| abstract_inverted_index.unified | 76 |
| abstract_inverted_index.virtual | 7, 116 |
| abstract_inverted_index.Phishing | 0 |
| abstract_inverted_index.ROC-AUC, | 101 |
| abstract_inverted_index.Semantic | 25, 64 |
| abstract_inverted_index.approach | 21 |
| abstract_inverted_index.combined | 59 |
| abstract_inverted_index.critical | 4 |
| abstract_inverted_index.features | 61, 80 |
| abstract_inverted_index.learning | 71, 105 |
| abstract_inverted_index.phishing | 30, 112 |
| abstract_inverted_index.presents | 18 |
| abstract_inverted_index.proposed | 33 |
| abstract_inverted_index.provides | 109 |
| abstract_inverted_index.reliable | 111 |
| abstract_inverted_index.solution | 114 |
| abstract_inverted_index.standard | 103 |
| abstract_inverted_index.superior | 91 |
| abstract_inverted_index.F1-score, | 97 |
| abstract_inverted_index.accuracy, | 95 |
| abstract_inverted_index.achieving | 93 |
| abstract_inverted_index.challenge | 5 |
| abstract_inverted_index.detection | 1, 113 |
| abstract_inverted_index.framework | 108 |
| abstract_inverted_index.including | 52 |
| abstract_inverted_index.leverages | 39 |
| abstract_inverted_index.malicious | 10 |
| abstract_inverted_index.security. | 15 |
| abstract_inverted_index.six-layer | 42 |
| abstract_inverted_index.activities | 11 |
| abstract_inverted_index.attention, | 54 |
| abstract_inverted_index.compromise | 13 |
| abstract_inverted_index.contextual | 47 |
| abstract_inverted_index.detection. | 31 |
| abstract_inverted_index.realities, | 8 |
| abstract_inverted_index.Experiments | 89 |
| abstract_inverted_index.classifier, | 53 |
| abstract_inverted_index.demonstrate | 90 |
| abstract_inverted_index.embeddings. | 48 |
| abstract_inverted_index.integrating | 22 |
| abstract_inverted_index.Technologies | 27, 66 |
| abstract_inverted_index.concatenated | 79 |
| abstract_inverted_index.performance, | 92 |
| abstract_inverted_index.preprocesses | 35 |
| abstract_inverted_index.environments. | 117 |
| abstract_inverted_index.outperforming | 102 |
| abstract_inverted_index.classification. | 88 |
| abstract_inverted_index.representation. | 77 |
| cited_by_percentile_year.max | 97 |
| cited_by_percentile_year.min | 96 |
| countries_distinct_count | 4 |
| institutions_distinct_count | 5 |
| citation_normalized_percentile.value | 0.98418155 |
| citation_normalized_percentile.is_in_top_1_percent | True |
| citation_normalized_percentile.is_in_top_10_percent | True |