Integrating Generative AI in Business Intelligence: A Practical Framework for Enhancing Augmented Analytics Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.33889/ijmems.2025.10.3.036
Business Intelligence (BI) workflows benefit from the improved access to insights that Generative Artificial Intelligence (GenAI) can bring, allowing for swifter democratization of data access and improved decision-making across various domains such as finance, retail, life sciences, education technology (EdTech), etc. Although existing literature discusses theoretical models or particular case studies, it does not provide a practical framework to integrate GenAI into BI. This study fills the gap by devising a pragmatic framework employing the qualitative research method featuring semi-structured interviews with professionals in varied disciplines. The results show that GenAI can improve the effectiveness of the interaction between technical experts and business users. Successful adoption, however, hinges on clarity of the organizational goals, effectiveness of the data management, user training, and system integration. Organizations can apply the proposed framework to integrate GenAI into BI systems to focus on operational excellence and support for real-time, data-driven decisions. These insights serve to advance BI practices, and act as a precursor to the future research in the domain of AI-integrated BI workflows.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.33889/ijmems.2025.10.3.036
- OA Status
- gold
- References
- 31
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4408190097
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4408190097Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.33889/ijmems.2025.10.3.036Digital Object Identifier
- Title
-
Integrating Generative AI in Business Intelligence: A Practical Framework for Enhancing Augmented AnalyticsWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-03-06Full publication date if available
- Authors
-
Darash Desai, Avani DesaiList of authors in order
- Landing page
-
https://doi.org/10.33889/ijmems.2025.10.3.036Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.33889/ijmems.2025.10.3.036Direct OA link when available
- Concepts
-
Business intelligence, Analytics, Generative grammar, Computer science, Business analytics, Data science, Artificial intelligence, Knowledge management, Business model, Business, Business analysis, MarketingTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
31Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4408190097 |
|---|---|
| doi | https://doi.org/10.33889/ijmems.2025.10.3.036 |
| ids.doi | https://doi.org/10.33889/ijmems.2025.10.3.036 |
| ids.openalex | https://openalex.org/W4408190097 |
| fwci | 0.0 |
| type | article |
| title | Integrating Generative AI in Business Intelligence: A Practical Framework for Enhancing Augmented Analytics |
| biblio.issue | 3 |
| biblio.volume | 10 |
| biblio.last_page | 728 |
| biblio.first_page | 704 |
| topics[0].id | https://openalex.org/T11891 |
| topics[0].field.id | https://openalex.org/fields/14 |
| topics[0].field.display_name | Business, Management and Accounting |
| topics[0].score | 0.998199999332428 |
| topics[0].domain.id | https://openalex.org/domains/2 |
| topics[0].domain.display_name | Social Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1404 |
| topics[0].subfield.display_name | Management Information Systems |
| topics[0].display_name | Big Data and Business Intelligence |
| topics[1].id | https://openalex.org/T10703 |
| topics[1].field.id | https://openalex.org/fields/14 |
| topics[1].field.display_name | Business, Management and Accounting |
| topics[1].score | 0.9520999789237976 |
| topics[1].domain.id | https://openalex.org/domains/2 |
| topics[1].domain.display_name | Social Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1404 |
| topics[1].subfield.display_name | Management Information Systems |
| topics[1].display_name | Business Process Modeling and Analysis |
| topics[2].id | https://openalex.org/T12384 |
| topics[2].field.id | https://openalex.org/fields/14 |
| topics[2].field.display_name | Business, Management and Accounting |
| topics[2].score | 0.9473999738693237 |
| topics[2].domain.id | https://openalex.org/domains/2 |
| topics[2].domain.display_name | Social Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1406 |
| topics[2].subfield.display_name | Marketing |
| topics[2].display_name | Customer churn and segmentation |
| is_xpac | False |
| apc_list.value | 500 |
| apc_list.currency | USD |
| apc_list.value_usd | 500 |
| apc_paid.value | 500 |
| apc_paid.currency | USD |
| apc_paid.value_usd | 500 |
| concepts[0].id | https://openalex.org/C2767350 |
| concepts[0].level | 2 |
| concepts[0].score | 0.8074210286140442 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q6662173 |
| concepts[0].display_name | Business intelligence |
| concepts[1].id | https://openalex.org/C79158427 |
| concepts[1].level | 2 |
| concepts[1].score | 0.7082393765449524 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q485396 |
| concepts[1].display_name | Analytics |
| concepts[2].id | https://openalex.org/C39890363 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6190159320831299 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q36108 |
| concepts[2].display_name | Generative grammar |
| concepts[3].id | https://openalex.org/C41008148 |
| concepts[3].level | 0 |
| concepts[3].score | 0.6077982187271118 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[3].display_name | Computer science |
| concepts[4].id | https://openalex.org/C37952496 |
| concepts[4].level | 4 |
| concepts[4].score | 0.5995467305183411 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q5001829 |
| concepts[4].display_name | Business analytics |
| concepts[5].id | https://openalex.org/C2522767166 |
| concepts[5].level | 1 |
| concepts[5].score | 0.5776384472846985 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q2374463 |
| concepts[5].display_name | Data science |
| concepts[6].id | https://openalex.org/C154945302 |
| concepts[6].level | 1 |
| concepts[6].score | 0.37299153208732605 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[6].display_name | Artificial intelligence |
| concepts[7].id | https://openalex.org/C56739046 |
| concepts[7].level | 1 |
| concepts[7].score | 0.24975860118865967 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q192060 |
| concepts[7].display_name | Knowledge management |
| concepts[8].id | https://openalex.org/C4216890 |
| concepts[8].level | 2 |
| concepts[8].score | 0.18786519765853882 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q815823 |
| concepts[8].display_name | Business model |
| concepts[9].id | https://openalex.org/C144133560 |
| concepts[9].level | 0 |
| concepts[9].score | 0.15943071246147156 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q4830453 |
| concepts[9].display_name | Business |
| concepts[10].id | https://openalex.org/C189076506 |
| concepts[10].level | 3 |
| concepts[10].score | 0.11869299411773682 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q1518232 |
| concepts[10].display_name | Business analysis |
| concepts[11].id | https://openalex.org/C162853370 |
| concepts[11].level | 1 |
| concepts[11].score | 0.08200868964195251 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q39809 |
| concepts[11].display_name | Marketing |
| keywords[0].id | https://openalex.org/keywords/business-intelligence |
| keywords[0].score | 0.8074210286140442 |
| keywords[0].display_name | Business intelligence |
| keywords[1].id | https://openalex.org/keywords/analytics |
| keywords[1].score | 0.7082393765449524 |
| keywords[1].display_name | Analytics |
| keywords[2].id | https://openalex.org/keywords/generative-grammar |
| keywords[2].score | 0.6190159320831299 |
| keywords[2].display_name | Generative grammar |
| keywords[3].id | https://openalex.org/keywords/computer-science |
| keywords[3].score | 0.6077982187271118 |
| keywords[3].display_name | Computer science |
| keywords[4].id | https://openalex.org/keywords/business-analytics |
| keywords[4].score | 0.5995467305183411 |
| keywords[4].display_name | Business analytics |
| keywords[5].id | https://openalex.org/keywords/data-science |
| keywords[5].score | 0.5776384472846985 |
| keywords[5].display_name | Data science |
| keywords[6].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[6].score | 0.37299153208732605 |
| keywords[6].display_name | Artificial intelligence |
| keywords[7].id | https://openalex.org/keywords/knowledge-management |
| keywords[7].score | 0.24975860118865967 |
| keywords[7].display_name | Knowledge management |
| keywords[8].id | https://openalex.org/keywords/business-model |
| keywords[8].score | 0.18786519765853882 |
| keywords[8].display_name | Business model |
| keywords[9].id | https://openalex.org/keywords/business |
| keywords[9].score | 0.15943071246147156 |
| keywords[9].display_name | Business |
| keywords[10].id | https://openalex.org/keywords/business-analysis |
| keywords[10].score | 0.11869299411773682 |
| keywords[10].display_name | Business analysis |
| keywords[11].id | https://openalex.org/keywords/marketing |
| keywords[11].score | 0.08200868964195251 |
| keywords[11].display_name | Marketing |
| language | en |
| locations[0].id | doi:10.33889/ijmems.2025.10.3.036 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210191629 |
| locations[0].source.issn | 2455-7749 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2455-7749 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | International Journal of Mathematical Engineering and Management Sciences |
| locations[0].source.host_organization | |
| locations[0].source.host_organization_name | |
| locations[0].license | cc-by |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | International Journal of Mathematical, Engineering and Management Sciences |
| locations[0].landing_page_url | https://doi.org/10.33889/ijmems.2025.10.3.036 |
| locations[1].id | pmh:oai:doaj.org/article:e6af97add4db4d43a46224714600d7f7 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].license | cc-by |
| locations[1].pdf_url | https://doi.org/10.33889/IJMEMS.2025.10.3.036 |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | https://openalex.org/licenses/cc-by |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | International Journal of Mathematical, Engineering and Management Sciences, Vol 10, Iss 3, Pp 704-728 (2025) |
| locations[1].landing_page_url | https://doi.org/10.33889/IJMEMS.2025.10.3.036 |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5074958677 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-0324-9277 |
| authorships[0].author.display_name | Darash Desai |
| authorships[0].countries | US |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I78577930 |
| authorships[0].affiliations[0].raw_affiliation_string | Applied Analytics Program, School of Professional Studies, Columbia University, New York, USA. |
| authorships[0].institutions[0].id | https://openalex.org/I78577930 |
| authorships[0].institutions[0].ror | https://ror.org/00hj8s172 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I78577930 |
| authorships[0].institutions[0].country_code | US |
| authorships[0].institutions[0].display_name | Columbia University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Darshan Desai |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Applied Analytics Program, School of Professional Studies, Columbia University, New York, USA. |
| authorships[1].author.id | https://openalex.org/A5016252241 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-4624-9325 |
| authorships[1].author.display_name | Avani Desai |
| authorships[1].countries | US |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I4210091812 |
| authorships[1].affiliations[0].raw_affiliation_string | Enterprise Data Architecture & Enablement Strategy, Bristol Myers Squibb, Princeton, New Jersey, USA. |
| authorships[1].institutions[0].id | https://openalex.org/I4210091812 |
| authorships[1].institutions[0].ror | https://ror.org/00gtmwv55 |
| authorships[1].institutions[0].type | company |
| authorships[1].institutions[0].lineage | https://openalex.org/I4210091812 |
| authorships[1].institutions[0].country_code | US |
| authorships[1].institutions[0].display_name | Bristol-Myers Squibb (United States) |
| authorships[1].author_position | last |
| authorships[1].raw_author_name | Ashish Desai |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Enterprise Data Architecture & Enablement Strategy, Bristol Myers Squibb, Princeton, New Jersey, USA. |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.33889/ijmems.2025.10.3.036 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Integrating Generative AI in Business Intelligence: A Practical Framework for Enhancing Augmented Analytics |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11891 |
| primary_topic.field.id | https://openalex.org/fields/14 |
| primary_topic.field.display_name | Business, Management and Accounting |
| primary_topic.score | 0.998199999332428 |
| primary_topic.domain.id | https://openalex.org/domains/2 |
| primary_topic.domain.display_name | Social Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1404 |
| primary_topic.subfield.display_name | Management Information Systems |
| primary_topic.display_name | Big Data and Business Intelligence |
| related_works | https://openalex.org/W4367856707, https://openalex.org/W3068949829, https://openalex.org/W2048156096, https://openalex.org/W4391096297, https://openalex.org/W2107023905, https://openalex.org/W4405308738, https://openalex.org/W3130756120, https://openalex.org/W2563093951, https://openalex.org/W4387541551, https://openalex.org/W2146681649 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | doi:10.33889/ijmems.2025.10.3.036 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210191629 |
| best_oa_location.source.issn | 2455-7749 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2455-7749 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | International Journal of Mathematical Engineering and Management Sciences |
| best_oa_location.source.host_organization | |
| best_oa_location.source.host_organization_name | |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | International Journal of Mathematical, Engineering and Management Sciences |
| best_oa_location.landing_page_url | https://doi.org/10.33889/ijmems.2025.10.3.036 |
| primary_location.id | doi:10.33889/ijmems.2025.10.3.036 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210191629 |
| primary_location.source.issn | 2455-7749 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2455-7749 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | International Journal of Mathematical Engineering and Management Sciences |
| primary_location.source.host_organization | |
| primary_location.source.host_organization_name | |
| primary_location.license | cc-by |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | International Journal of Mathematical, Engineering and Management Sciences |
| primary_location.landing_page_url | https://doi.org/10.33889/ijmems.2025.10.3.036 |
| publication_date | 2025-03-06 |
| publication_year | 2025 |
| referenced_works | https://openalex.org/W4307261716, https://openalex.org/W4386858959, https://openalex.org/W1979290264, https://openalex.org/W4377291442, https://openalex.org/W2415220657, https://openalex.org/W4379164630, https://openalex.org/W4382987554, https://openalex.org/W2896457183, https://openalex.org/W4360620450, https://openalex.org/W1515587369, https://openalex.org/W6853235277, https://openalex.org/W4385452929, https://openalex.org/W4361002760, https://openalex.org/W4379390733, https://openalex.org/W4391903859, https://openalex.org/W3111653315, https://openalex.org/W4392740847, https://openalex.org/W7045429204, https://openalex.org/W4242910575, https://openalex.org/W3024014746, https://openalex.org/W4396941173, https://openalex.org/W4404208572, https://openalex.org/W4390036776, https://openalex.org/W4319264390, https://openalex.org/W4384655485, https://openalex.org/W4402671806, https://openalex.org/W4390658443, https://openalex.org/W4392889205, https://openalex.org/W4384561707, https://openalex.org/W2906994370, https://openalex.org/W6739901393 |
| referenced_works_count | 31 |
| abstract_inverted_index.a | 55, 70, 157 |
| abstract_inverted_index.BI | 134, 152, 168 |
| abstract_inverted_index.as | 32, 156 |
| abstract_inverted_index.by | 68 |
| abstract_inverted_index.in | 83, 163 |
| abstract_inverted_index.it | 51 |
| abstract_inverted_index.of | 22, 95, 110, 115, 166 |
| abstract_inverted_index.on | 108, 138 |
| abstract_inverted_index.or | 47 |
| abstract_inverted_index.to | 9, 58, 130, 136, 150, 159 |
| abstract_inverted_index.BI. | 62 |
| abstract_inverted_index.The | 86 |
| abstract_inverted_index.act | 155 |
| abstract_inverted_index.and | 25, 101, 121, 141, 154 |
| abstract_inverted_index.can | 16, 91, 125 |
| abstract_inverted_index.for | 19, 143 |
| abstract_inverted_index.gap | 67 |
| abstract_inverted_index.not | 53 |
| abstract_inverted_index.the | 6, 66, 74, 93, 96, 111, 116, 127, 160, 164 |
| abstract_inverted_index.(BI) | 2 |
| abstract_inverted_index.This | 63 |
| abstract_inverted_index.case | 49 |
| abstract_inverted_index.data | 23, 117 |
| abstract_inverted_index.does | 52 |
| abstract_inverted_index.etc. | 40 |
| abstract_inverted_index.from | 5 |
| abstract_inverted_index.into | 61, 133 |
| abstract_inverted_index.life | 35 |
| abstract_inverted_index.show | 88 |
| abstract_inverted_index.such | 31 |
| abstract_inverted_index.that | 11, 89 |
| abstract_inverted_index.user | 119 |
| abstract_inverted_index.with | 81 |
| abstract_inverted_index.GenAI | 60, 90, 132 |
| abstract_inverted_index.These | 147 |
| abstract_inverted_index.apply | 126 |
| abstract_inverted_index.fills | 65 |
| abstract_inverted_index.focus | 137 |
| abstract_inverted_index.serve | 149 |
| abstract_inverted_index.study | 64 |
| abstract_inverted_index.access | 8, 24 |
| abstract_inverted_index.across | 28 |
| abstract_inverted_index.bring, | 17 |
| abstract_inverted_index.domain | 165 |
| abstract_inverted_index.future | 161 |
| abstract_inverted_index.goals, | 113 |
| abstract_inverted_index.hinges | 107 |
| abstract_inverted_index.method | 77 |
| abstract_inverted_index.models | 46 |
| abstract_inverted_index.system | 122 |
| abstract_inverted_index.users. | 103 |
| abstract_inverted_index.varied | 84 |
| abstract_inverted_index.(GenAI) | 15 |
| abstract_inverted_index.advance | 151 |
| abstract_inverted_index.benefit | 4 |
| abstract_inverted_index.between | 98 |
| abstract_inverted_index.clarity | 109 |
| abstract_inverted_index.domains | 30 |
| abstract_inverted_index.experts | 100 |
| abstract_inverted_index.improve | 92 |
| abstract_inverted_index.provide | 54 |
| abstract_inverted_index.results | 87 |
| abstract_inverted_index.retail, | 34 |
| abstract_inverted_index.support | 142 |
| abstract_inverted_index.swifter | 20 |
| abstract_inverted_index.systems | 135 |
| abstract_inverted_index.various | 29 |
| abstract_inverted_index.Although | 41 |
| abstract_inverted_index.Business | 0 |
| abstract_inverted_index.allowing | 18 |
| abstract_inverted_index.business | 102 |
| abstract_inverted_index.devising | 69 |
| abstract_inverted_index.existing | 42 |
| abstract_inverted_index.finance, | 33 |
| abstract_inverted_index.however, | 106 |
| abstract_inverted_index.improved | 7, 26 |
| abstract_inverted_index.insights | 10, 148 |
| abstract_inverted_index.proposed | 128 |
| abstract_inverted_index.research | 76, 162 |
| abstract_inverted_index.studies, | 50 |
| abstract_inverted_index.(EdTech), | 39 |
| abstract_inverted_index.adoption, | 105 |
| abstract_inverted_index.discusses | 44 |
| abstract_inverted_index.education | 37 |
| abstract_inverted_index.employing | 73 |
| abstract_inverted_index.featuring | 78 |
| abstract_inverted_index.framework | 57, 72, 129 |
| abstract_inverted_index.integrate | 59, 131 |
| abstract_inverted_index.practical | 56 |
| abstract_inverted_index.pragmatic | 71 |
| abstract_inverted_index.precursor | 158 |
| abstract_inverted_index.sciences, | 36 |
| abstract_inverted_index.technical | 99 |
| abstract_inverted_index.training, | 120 |
| abstract_inverted_index.workflows | 3 |
| abstract_inverted_index.Artificial | 13 |
| abstract_inverted_index.Generative | 12 |
| abstract_inverted_index.Successful | 104 |
| abstract_inverted_index.decisions. | 146 |
| abstract_inverted_index.excellence | 140 |
| abstract_inverted_index.interviews | 80 |
| abstract_inverted_index.literature | 43 |
| abstract_inverted_index.particular | 48 |
| abstract_inverted_index.practices, | 153 |
| abstract_inverted_index.real-time, | 144 |
| abstract_inverted_index.technology | 38 |
| abstract_inverted_index.workflows. | 169 |
| abstract_inverted_index.data-driven | 145 |
| abstract_inverted_index.interaction | 97 |
| abstract_inverted_index.management, | 118 |
| abstract_inverted_index.operational | 139 |
| abstract_inverted_index.qualitative | 75 |
| abstract_inverted_index.theoretical | 45 |
| abstract_inverted_index.Intelligence | 1, 14 |
| abstract_inverted_index.disciplines. | 85 |
| abstract_inverted_index.integration. | 123 |
| abstract_inverted_index.AI-integrated | 167 |
| abstract_inverted_index.Organizations | 124 |
| abstract_inverted_index.effectiveness | 94, 114 |
| abstract_inverted_index.professionals | 82 |
| abstract_inverted_index.organizational | 112 |
| abstract_inverted_index.decision-making | 27 |
| abstract_inverted_index.democratization | 21 |
| abstract_inverted_index.semi-structured | 79 |
| cited_by_percentile_year | |
| countries_distinct_count | 1 |
| institutions_distinct_count | 2 |
| citation_normalized_percentile.value | 0.09072763 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |