Integrating knowledge graph, complex network and Bayesian network for data-driven risk assessment Article Swipe
YOU?
·
· 2022
· Open Access
·
· DOI: https://doi.org/10.3303/cet2290006
Bayesian network is an effective method for quantitative risk assessment, but most existing studies are either heavily data-dependent or excessively expert-dependent. In this paper, knowledge graph, complex network theory and Bayesian network are integrated into a KCB model for data-driven risk assessment, especially small data situations. By applying knowledge graph with natural language processing, a causation graph could be extracted and illustrated from accident reports. Some indexes from complex network theory are introduced to identify critical nodes to simplify the huge graph. Based on the simplified network, a Bayesian network is established to quantitatively demonstrate accidents from causes to consequences. Moreover, sensitivity analysis and scenario analysis are conducted to support the decision-making of safety management. In all, the expert involvement of Bayesian network can be reduced by applying the KCB model. Besides, the KCB model can be further applied to many other areas to reach uncertainty modelling.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doaj.org/article/20bd9adb80354fe69f01b9297757e4c1
- OA Status
- green
- Cited By
- 4
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4389288745
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4389288745Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.3303/cet2290006Digital Object Identifier
- Title
-
Integrating knowledge graph, complex network and Bayesian network for data-driven risk assessmentWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2022Year of publication
- Publication date
-
2022-05-01Full publication date if available
- Authors
-
Yiping Bai, Yuxuan Xing, Jiansong WuList of authors in order
- Landing page
-
https://doaj.org/article/20bd9adb80354fe69f01b9297757e4c1Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://doaj.org/article/20bd9adb80354fe69f01b9297757e4c1Direct OA link when available
- Concepts
-
Bayesian network, Computer science, Graph, Data science, Artificial intelligence, Data mining, Machine learning, Theoretical computer scienceTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
4Total citation count in OpenAlex
- Citations by year (recent)
-
2024: 2, 2023: 2Per-year citation counts (last 5 years)
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4389288745 |
|---|---|
| doi | https://doi.org/10.3303/cet2290006 |
| ids.openalex | https://openalex.org/W4389288745 |
| fwci | 0.87001575 |
| type | article |
| title | Integrating knowledge graph, complex network and Bayesian network for data-driven risk assessment |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11357 |
| topics[0].field.id | https://openalex.org/fields/18 |
| topics[0].field.display_name | Decision Sciences |
| topics[0].score | 0.9010999798774719 |
| topics[0].domain.id | https://openalex.org/domains/2 |
| topics[0].domain.display_name | Social Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1804 |
| topics[0].subfield.display_name | Statistics, Probability and Uncertainty |
| topics[0].display_name | Risk and Safety Analysis |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C33724603 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7513072490692139 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q812540 |
| concepts[0].display_name | Bayesian network |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.6432675719261169 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C132525143 |
| concepts[2].level | 2 |
| concepts[2].score | 0.45865345001220703 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q141488 |
| concepts[2].display_name | Graph |
| concepts[3].id | https://openalex.org/C2522767166 |
| concepts[3].level | 1 |
| concepts[3].score | 0.4051317572593689 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q2374463 |
| concepts[3].display_name | Data science |
| concepts[4].id | https://openalex.org/C154945302 |
| concepts[4].level | 1 |
| concepts[4].score | 0.3737570643424988 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[4].display_name | Artificial intelligence |
| concepts[5].id | https://openalex.org/C124101348 |
| concepts[5].level | 1 |
| concepts[5].score | 0.355855792760849 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q172491 |
| concepts[5].display_name | Data mining |
| concepts[6].id | https://openalex.org/C119857082 |
| concepts[6].level | 1 |
| concepts[6].score | 0.34200519323349 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[6].display_name | Machine learning |
| concepts[7].id | https://openalex.org/C80444323 |
| concepts[7].level | 1 |
| concepts[7].score | 0.2594749331474304 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q2878974 |
| concepts[7].display_name | Theoretical computer science |
| keywords[0].id | https://openalex.org/keywords/bayesian-network |
| keywords[0].score | 0.7513072490692139 |
| keywords[0].display_name | Bayesian network |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.6432675719261169 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/graph |
| keywords[2].score | 0.45865345001220703 |
| keywords[2].display_name | Graph |
| keywords[3].id | https://openalex.org/keywords/data-science |
| keywords[3].score | 0.4051317572593689 |
| keywords[3].display_name | Data science |
| keywords[4].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[4].score | 0.3737570643424988 |
| keywords[4].display_name | Artificial intelligence |
| keywords[5].id | https://openalex.org/keywords/data-mining |
| keywords[5].score | 0.355855792760849 |
| keywords[5].display_name | Data mining |
| keywords[6].id | https://openalex.org/keywords/machine-learning |
| keywords[6].score | 0.34200519323349 |
| keywords[6].display_name | Machine learning |
| keywords[7].id | https://openalex.org/keywords/theoretical-computer-science |
| keywords[7].score | 0.2594749331474304 |
| keywords[7].display_name | Theoretical computer science |
| language | en |
| locations[0].id | pmh:oai:doaj.org/article:20bd9adb80354fe69f01b9297757e4c1 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306401280 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[0].source.host_organization | |
| locations[0].source.host_organization_name | |
| locations[0].license | cc-by-sa |
| locations[0].pdf_url | |
| locations[0].version | submittedVersion |
| locations[0].raw_type | article |
| locations[0].license_id | https://openalex.org/licenses/cc-by-sa |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | Chemical Engineering Transactions, Vol 90 (2022) |
| locations[0].landing_page_url | https://doaj.org/article/20bd9adb80354fe69f01b9297757e4c1 |
| indexed_in | doaj |
| authorships[0].author.id | https://openalex.org/A5011453425 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-6699-4827 |
| authorships[0].author.display_name | Yiping Bai |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Yiping Bai |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5037467719 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-1476-7603 |
| authorships[1].author.display_name | Yuxuan Xing |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Yuxuan Xing |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5070800977 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-9648-6479 |
| authorships[2].author.display_name | Jiansong Wu |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Jiansong Wu |
| authorships[2].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doaj.org/article/20bd9adb80354fe69f01b9297757e4c1 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Integrating knowledge graph, complex network and Bayesian network for data-driven risk assessment |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11357 |
| primary_topic.field.id | https://openalex.org/fields/18 |
| primary_topic.field.display_name | Decision Sciences |
| primary_topic.score | 0.9010999798774719 |
| primary_topic.domain.id | https://openalex.org/domains/2 |
| primary_topic.domain.display_name | Social Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1804 |
| primary_topic.subfield.display_name | Statistics, Probability and Uncertainty |
| primary_topic.display_name | Risk and Safety Analysis |
| related_works | https://openalex.org/W2972991241, https://openalex.org/W2961085424, https://openalex.org/W2381390841, https://openalex.org/W4224009465, https://openalex.org/W4306674287, https://openalex.org/W4286629047, https://openalex.org/W2955463503, https://openalex.org/W3207148653, https://openalex.org/W2371925260, https://openalex.org/W4205958290 |
| cited_by_count | 4 |
| counts_by_year[0].year | 2024 |
| counts_by_year[0].cited_by_count | 2 |
| counts_by_year[1].year | 2023 |
| counts_by_year[1].cited_by_count | 2 |
| locations_count | 1 |
| best_oa_location.id | pmh:oai:doaj.org/article:20bd9adb80354fe69f01b9297757e4c1 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306401280 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| best_oa_location.source.host_organization | |
| best_oa_location.source.host_organization_name | |
| best_oa_location.license | cc-by-sa |
| best_oa_location.pdf_url | |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by-sa |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | Chemical Engineering Transactions, Vol 90 (2022) |
| best_oa_location.landing_page_url | https://doaj.org/article/20bd9adb80354fe69f01b9297757e4c1 |
| primary_location.id | pmh:oai:doaj.org/article:20bd9adb80354fe69f01b9297757e4c1 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306401280 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| primary_location.source.host_organization | |
| primary_location.source.host_organization_name | |
| primary_location.license | cc-by-sa |
| primary_location.pdf_url | |
| primary_location.version | submittedVersion |
| primary_location.raw_type | article |
| primary_location.license_id | https://openalex.org/licenses/cc-by-sa |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | Chemical Engineering Transactions, Vol 90 (2022) |
| primary_location.landing_page_url | https://doaj.org/article/20bd9adb80354fe69f01b9297757e4c1 |
| publication_date | 2022-05-01 |
| publication_year | 2022 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 35, 54, 87 |
| abstract_inverted_index.By | 46 |
| abstract_inverted_index.In | 21, 115 |
| abstract_inverted_index.an | 3 |
| abstract_inverted_index.be | 58, 124, 136 |
| abstract_inverted_index.by | 126 |
| abstract_inverted_index.is | 2, 90 |
| abstract_inverted_index.of | 112, 120 |
| abstract_inverted_index.on | 83 |
| abstract_inverted_index.or | 18 |
| abstract_inverted_index.to | 73, 77, 92, 98, 108, 139, 143 |
| abstract_inverted_index.KCB | 36, 129, 133 |
| abstract_inverted_index.and | 29, 60, 103 |
| abstract_inverted_index.are | 14, 32, 71, 106 |
| abstract_inverted_index.but | 10 |
| abstract_inverted_index.can | 123, 135 |
| abstract_inverted_index.for | 6, 38 |
| abstract_inverted_index.the | 79, 84, 110, 117, 128, 132 |
| abstract_inverted_index.Some | 65 |
| abstract_inverted_index.all, | 116 |
| abstract_inverted_index.data | 44 |
| abstract_inverted_index.from | 62, 67, 96 |
| abstract_inverted_index.huge | 80 |
| abstract_inverted_index.into | 34 |
| abstract_inverted_index.many | 140 |
| abstract_inverted_index.most | 11 |
| abstract_inverted_index.risk | 8, 40 |
| abstract_inverted_index.this | 22 |
| abstract_inverted_index.with | 50 |
| abstract_inverted_index.Based | 82 |
| abstract_inverted_index.areas | 142 |
| abstract_inverted_index.could | 57 |
| abstract_inverted_index.graph | 49, 56 |
| abstract_inverted_index.model | 37, 134 |
| abstract_inverted_index.nodes | 76 |
| abstract_inverted_index.other | 141 |
| abstract_inverted_index.reach | 144 |
| abstract_inverted_index.small | 43 |
| abstract_inverted_index.causes | 97 |
| abstract_inverted_index.either | 15 |
| abstract_inverted_index.expert | 118 |
| abstract_inverted_index.graph, | 25 |
| abstract_inverted_index.graph. | 81 |
| abstract_inverted_index.method | 5 |
| abstract_inverted_index.model. | 130 |
| abstract_inverted_index.paper, | 23 |
| abstract_inverted_index.safety | 113 |
| abstract_inverted_index.theory | 28, 70 |
| abstract_inverted_index.applied | 138 |
| abstract_inverted_index.complex | 26, 68 |
| abstract_inverted_index.further | 137 |
| abstract_inverted_index.heavily | 16 |
| abstract_inverted_index.indexes | 66 |
| abstract_inverted_index.natural | 51 |
| abstract_inverted_index.network | 1, 27, 31, 69, 89, 122 |
| abstract_inverted_index.reduced | 125 |
| abstract_inverted_index.studies | 13 |
| abstract_inverted_index.support | 109 |
| abstract_inverted_index.Bayesian | 0, 30, 88, 121 |
| abstract_inverted_index.Besides, | 131 |
| abstract_inverted_index.accident | 63 |
| abstract_inverted_index.analysis | 102, 105 |
| abstract_inverted_index.applying | 47, 127 |
| abstract_inverted_index.critical | 75 |
| abstract_inverted_index.existing | 12 |
| abstract_inverted_index.identify | 74 |
| abstract_inverted_index.language | 52 |
| abstract_inverted_index.network, | 86 |
| abstract_inverted_index.reports. | 64 |
| abstract_inverted_index.scenario | 104 |
| abstract_inverted_index.simplify | 78 |
| abstract_inverted_index.Moreover, | 100 |
| abstract_inverted_index.accidents | 95 |
| abstract_inverted_index.causation | 55 |
| abstract_inverted_index.conducted | 107 |
| abstract_inverted_index.effective | 4 |
| abstract_inverted_index.extracted | 59 |
| abstract_inverted_index.knowledge | 24, 48 |
| abstract_inverted_index.especially | 42 |
| abstract_inverted_index.integrated | 33 |
| abstract_inverted_index.introduced | 72 |
| abstract_inverted_index.modelling. | 146 |
| abstract_inverted_index.simplified | 85 |
| abstract_inverted_index.assessment, | 9, 41 |
| abstract_inverted_index.data-driven | 39 |
| abstract_inverted_index.demonstrate | 94 |
| abstract_inverted_index.established | 91 |
| abstract_inverted_index.excessively | 19 |
| abstract_inverted_index.illustrated | 61 |
| abstract_inverted_index.involvement | 119 |
| abstract_inverted_index.management. | 114 |
| abstract_inverted_index.processing, | 53 |
| abstract_inverted_index.sensitivity | 101 |
| abstract_inverted_index.situations. | 45 |
| abstract_inverted_index.uncertainty | 145 |
| abstract_inverted_index.quantitative | 7 |
| abstract_inverted_index.consequences. | 99 |
| abstract_inverted_index.data-dependent | 17 |
| abstract_inverted_index.quantitatively | 93 |
| abstract_inverted_index.decision-making | 111 |
| abstract_inverted_index.expert-dependent. | 20 |
| cited_by_percentile_year.max | 96 |
| cited_by_percentile_year.min | 94 |
| countries_distinct_count | 0 |
| institutions_distinct_count | 3 |
| citation_normalized_percentile.value | 0.77176914 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |