Integrating knowledge, omics and AI to develop patient-specific virtual avatars Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.1101/2024.11.07.622508
We propose a method for creating personalized regulatory networks, enabling the development of virtual avatars for cancer patients, with patient-derived xenograft (PDX) models as a test case. Starting from a Prior Knowledge Network (PKN) based on the hallmarks of cancer, we constructed gene networks that are contextualized to each sample by integrating sample-specific gene expression data. These networks were optimized using a genetic algorithm to align with individual molecular profiles, focusing on key cancer-related processes. Following network optimization, we employed Graph Convolutional Networks (GCNs) to classify samples based the structures and interactions of their individualized network models and molecular profiles. This personalized approach provides insights into drug responses and helps predict treatment outcomes, offering a path toward more targeted cancer therapies. Author summary Cancer treatment can be more effective when therapies are personalized to each patients unique molecular profile. In this study, we introduce a method to create virtual avatars of cancer patients by personalizing regulatory networks using patient-derived xenograft (PDX) models as a proof of concept. Starting from known cancer hallmarks, we developed individualized gene networks for each sample by leveraging their specific gene expression data. These networks were refined with an optimization process to match the distinct molecular characteristics of each sample. By applying advanced machine learning, specifically Graph Convolutional Networks (GCNs), we classified these personalized models to better understand likely drug responses and predict treatment outcomes. This approach brings us closer to tailoring cancer therapies to individual patients, potentially improving treatment success by targeting key cancer pathways unique to each person.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- https://doi.org/10.1101/2024.11.07.622508
- OA Status
- green
- Cited By
- 1
- References
- 24
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4404253709
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4404253709Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1101/2024.11.07.622508Digital Object Identifier
- Title
-
Integrating knowledge, omics and AI to develop patient-specific virtual avatarsWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-11-12Full publication date if available
- Authors
-
Amel Bekkar, Luca Santuari, Ioannis Xénarios, Alaaddin Bulak ArpatList of authors in order
- Landing page
-
https://doi.org/10.1101/2024.11.07.622508Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.1101/2024.11.07.622508Direct OA link when available
- Concepts
-
Computer science, Omics, Human–computer interaction, Computational biology, Artificial intelligence, Bioinformatics, BiologyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
1Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1Per-year citation counts (last 5 years)
- References (count)
-
24Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4404253709 |
|---|---|
| doi | https://doi.org/10.1101/2024.11.07.622508 |
| ids.doi | https://doi.org/10.1101/2024.11.07.622508 |
| ids.openalex | https://openalex.org/W4404253709 |
| fwci | 0.24339971 |
| type | preprint |
| title | Integrating knowledge, omics and AI to develop patient-specific virtual avatars |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11636 |
| topics[0].field.id | https://openalex.org/fields/27 |
| topics[0].field.display_name | Medicine |
| topics[0].score | 0.599399983882904 |
| topics[0].domain.id | https://openalex.org/domains/4 |
| topics[0].domain.display_name | Health Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2718 |
| topics[0].subfield.display_name | Health Informatics |
| topics[0].display_name | Artificial Intelligence in Healthcare and Education |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.5195032358169556 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C157585117 |
| concepts[1].level | 2 |
| concepts[1].score | 0.5184683203697205 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q158666 |
| concepts[1].display_name | Omics |
| concepts[2].id | https://openalex.org/C107457646 |
| concepts[2].level | 1 |
| concepts[2].score | 0.4357263743877411 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q207434 |
| concepts[2].display_name | Human–computer interaction |
| concepts[3].id | https://openalex.org/C70721500 |
| concepts[3].level | 1 |
| concepts[3].score | 0.3718110918998718 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q177005 |
| concepts[3].display_name | Computational biology |
| concepts[4].id | https://openalex.org/C154945302 |
| concepts[4].level | 1 |
| concepts[4].score | 0.3453163206577301 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[4].display_name | Artificial intelligence |
| concepts[5].id | https://openalex.org/C60644358 |
| concepts[5].level | 1 |
| concepts[5].score | 0.16897666454315186 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q128570 |
| concepts[5].display_name | Bioinformatics |
| concepts[6].id | https://openalex.org/C86803240 |
| concepts[6].level | 0 |
| concepts[6].score | 0.14477568864822388 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q420 |
| concepts[6].display_name | Biology |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.5195032358169556 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/omics |
| keywords[1].score | 0.5184683203697205 |
| keywords[1].display_name | Omics |
| keywords[2].id | https://openalex.org/keywords/human–computer-interaction |
| keywords[2].score | 0.4357263743877411 |
| keywords[2].display_name | Human–computer interaction |
| keywords[3].id | https://openalex.org/keywords/computational-biology |
| keywords[3].score | 0.3718110918998718 |
| keywords[3].display_name | Computational biology |
| keywords[4].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[4].score | 0.3453163206577301 |
| keywords[4].display_name | Artificial intelligence |
| keywords[5].id | https://openalex.org/keywords/bioinformatics |
| keywords[5].score | 0.16897666454315186 |
| keywords[5].display_name | Bioinformatics |
| keywords[6].id | https://openalex.org/keywords/biology |
| keywords[6].score | 0.14477568864822388 |
| keywords[6].display_name | Biology |
| language | en |
| locations[0].id | doi:10.1101/2024.11.07.622508 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306402567 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | bioRxiv (Cold Spring Harbor Laboratory) |
| locations[0].source.host_organization | https://openalex.org/I2750212522 |
| locations[0].source.host_organization_name | Cold Spring Harbor Laboratory |
| locations[0].source.host_organization_lineage | https://openalex.org/I2750212522 |
| locations[0].license | cc-by |
| locations[0].pdf_url | |
| locations[0].version | acceptedVersion |
| locations[0].raw_type | posted-content |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | https://doi.org/10.1101/2024.11.07.622508 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5054443425 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-9596-4202 |
| authorships[0].author.display_name | Amel Bekkar |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Amel Bekkar |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5013509179 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-8784-2507 |
| authorships[1].author.display_name | Luca Santuari |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Luca Santuari |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5065825020 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-3413-6841 |
| authorships[2].author.display_name | Ioannis Xénarios |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Ioannis Xenarios |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5029054945 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-7749-3793 |
| authorships[3].author.display_name | Alaaddin Bulak Arpat |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Bulak Arpat |
| authorships[3].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.1101/2024.11.07.622508 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Integrating knowledge, omics and AI to develop patient-specific virtual avatars |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11636 |
| primary_topic.field.id | https://openalex.org/fields/27 |
| primary_topic.field.display_name | Medicine |
| primary_topic.score | 0.599399983882904 |
| primary_topic.domain.id | https://openalex.org/domains/4 |
| primary_topic.domain.display_name | Health Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2718 |
| primary_topic.subfield.display_name | Health Informatics |
| primary_topic.display_name | Artificial Intelligence in Healthcare and Education |
| related_works | https://openalex.org/W4391375266, https://openalex.org/W2899084033, https://openalex.org/W2748952813, https://openalex.org/W2390279801, https://openalex.org/W4391913857, https://openalex.org/W2358668433, https://openalex.org/W4396701345, https://openalex.org/W2376932109, https://openalex.org/W2001405890, https://openalex.org/W4396696052 |
| cited_by_count | 1 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| locations_count | 1 |
| best_oa_location.id | doi:10.1101/2024.11.07.622508 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306402567 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | bioRxiv (Cold Spring Harbor Laboratory) |
| best_oa_location.source.host_organization | https://openalex.org/I2750212522 |
| best_oa_location.source.host_organization_name | Cold Spring Harbor Laboratory |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I2750212522 |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | acceptedVersion |
| best_oa_location.raw_type | posted-content |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | https://doi.org/10.1101/2024.11.07.622508 |
| primary_location.id | doi:10.1101/2024.11.07.622508 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306402567 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | bioRxiv (Cold Spring Harbor Laboratory) |
| primary_location.source.host_organization | https://openalex.org/I2750212522 |
| primary_location.source.host_organization_name | Cold Spring Harbor Laboratory |
| primary_location.source.host_organization_lineage | https://openalex.org/I2750212522 |
| primary_location.license | cc-by |
| primary_location.pdf_url | |
| primary_location.version | acceptedVersion |
| primary_location.raw_type | posted-content |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | https://doi.org/10.1101/2024.11.07.622508 |
| publication_date | 2024-11-12 |
| publication_year | 2024 |
| referenced_works | https://openalex.org/W3007934576, https://openalex.org/W4213007074, https://openalex.org/W1977284963, https://openalex.org/W4384405933, https://openalex.org/W4288045534, https://openalex.org/W2999841713, https://openalex.org/W4399882789, https://openalex.org/W4387774515, https://openalex.org/W3101369110, https://openalex.org/W4390754123, https://openalex.org/W4388899387, https://openalex.org/W2109384743, https://openalex.org/W4391733770, https://openalex.org/W3170986249, https://openalex.org/W4384928439, https://openalex.org/W4385955324, https://openalex.org/W4400869919, https://openalex.org/W2529634546, https://openalex.org/W4206662285, https://openalex.org/W2214074259, https://openalex.org/W4306353209, https://openalex.org/W3138055079, https://openalex.org/W2912260118, https://openalex.org/W3080647147 |
| referenced_works_count | 24 |
| abstract_inverted_index.a | 3, 25, 30, 62, 115, 145, 164 |
| abstract_inverted_index.By | 205 |
| abstract_inverted_index.In | 140 |
| abstract_inverted_index.We | 1 |
| abstract_inverted_index.an | 193 |
| abstract_inverted_index.as | 24, 163 |
| abstract_inverted_index.be | 127 |
| abstract_inverted_index.by | 51, 154, 181, 246 |
| abstract_inverted_index.of | 13, 39, 93, 151, 166, 202 |
| abstract_inverted_index.on | 36, 72 |
| abstract_inverted_index.to | 48, 65, 85, 134, 147, 196, 220, 235, 239, 252 |
| abstract_inverted_index.us | 233 |
| abstract_inverted_index.we | 41, 79, 143, 173, 215 |
| abstract_inverted_index.and | 91, 98, 109, 226 |
| abstract_inverted_index.are | 46, 132 |
| abstract_inverted_index.can | 126 |
| abstract_inverted_index.for | 5, 16, 178 |
| abstract_inverted_index.key | 73, 248 |
| abstract_inverted_index.the | 11, 37, 89, 198 |
| abstract_inverted_index.This | 101, 230 |
| abstract_inverted_index.drug | 107, 224 |
| abstract_inverted_index.each | 49, 135, 179, 203, 253 |
| abstract_inverted_index.from | 29, 169 |
| abstract_inverted_index.gene | 43, 54, 176, 185 |
| abstract_inverted_index.into | 106 |
| abstract_inverted_index.more | 118, 128 |
| abstract_inverted_index.path | 116 |
| abstract_inverted_index.test | 26 |
| abstract_inverted_index.that | 45 |
| abstract_inverted_index.this | 141 |
| abstract_inverted_index.were | 59, 190 |
| abstract_inverted_index.when | 130 |
| abstract_inverted_index.with | 19, 67, 192 |
| abstract_inverted_index.(PDX) | 22, 161 |
| abstract_inverted_index.(PKN) | 34 |
| abstract_inverted_index.Graph | 81, 211 |
| abstract_inverted_index.Prior | 31 |
| abstract_inverted_index.These | 57, 188 |
| abstract_inverted_index.align | 66 |
| abstract_inverted_index.based | 35, 88 |
| abstract_inverted_index.case. | 27 |
| abstract_inverted_index.data. | 56, 187 |
| abstract_inverted_index.helps | 110 |
| abstract_inverted_index.known | 170 |
| abstract_inverted_index.match | 197 |
| abstract_inverted_index.proof | 165 |
| abstract_inverted_index.their | 94, 183 |
| abstract_inverted_index.these | 217 |
| abstract_inverted_index.using | 61, 158 |
| abstract_inverted_index.(GCNs) | 84 |
| abstract_inverted_index.Author | 122 |
| abstract_inverted_index.Cancer | 124 |
| abstract_inverted_index.better | 221 |
| abstract_inverted_index.brings | 232 |
| abstract_inverted_index.cancer | 17, 120, 152, 171, 237, 249 |
| abstract_inverted_index.closer | 234 |
| abstract_inverted_index.create | 148 |
| abstract_inverted_index.likely | 223 |
| abstract_inverted_index.method | 4, 146 |
| abstract_inverted_index.models | 23, 97, 162, 219 |
| abstract_inverted_index.sample | 50, 180 |
| abstract_inverted_index.study, | 142 |
| abstract_inverted_index.toward | 117 |
| abstract_inverted_index.unique | 137, 251 |
| abstract_inverted_index.(GCNs), | 214 |
| abstract_inverted_index.Network | 33 |
| abstract_inverted_index.avatars | 15, 150 |
| abstract_inverted_index.cancer, | 40 |
| abstract_inverted_index.genetic | 63 |
| abstract_inverted_index.machine | 208 |
| abstract_inverted_index.network | 77, 96 |
| abstract_inverted_index.person. | 254 |
| abstract_inverted_index.predict | 111, 227 |
| abstract_inverted_index.process | 195 |
| abstract_inverted_index.propose | 2 |
| abstract_inverted_index.refined | 191 |
| abstract_inverted_index.sample. | 204 |
| abstract_inverted_index.samples | 87 |
| abstract_inverted_index.success | 245 |
| abstract_inverted_index.summary | 123 |
| abstract_inverted_index.virtual | 14, 149 |
| abstract_inverted_index.Abstract | 0 |
| abstract_inverted_index.Networks | 83, 213 |
| abstract_inverted_index.Starting | 28, 168 |
| abstract_inverted_index.advanced | 207 |
| abstract_inverted_index.applying | 206 |
| abstract_inverted_index.approach | 103, 231 |
| abstract_inverted_index.classify | 86 |
| abstract_inverted_index.concept. | 167 |
| abstract_inverted_index.creating | 6 |
| abstract_inverted_index.distinct | 199 |
| abstract_inverted_index.employed | 80 |
| abstract_inverted_index.enabling | 10 |
| abstract_inverted_index.focusing | 71 |
| abstract_inverted_index.insights | 105 |
| abstract_inverted_index.networks | 44, 58, 157, 177, 189 |
| abstract_inverted_index.offering | 114 |
| abstract_inverted_index.pathways | 250 |
| abstract_inverted_index.patients | 136, 153 |
| abstract_inverted_index.profile. | 139 |
| abstract_inverted_index.provides | 104 |
| abstract_inverted_index.specific | 184 |
| abstract_inverted_index.targeted | 119 |
| abstract_inverted_index.Following | 76 |
| abstract_inverted_index.Knowledge | 32 |
| abstract_inverted_index.algorithm | 64 |
| abstract_inverted_index.developed | 174 |
| abstract_inverted_index.effective | 129 |
| abstract_inverted_index.hallmarks | 38 |
| abstract_inverted_index.improving | 243 |
| abstract_inverted_index.introduce | 144 |
| abstract_inverted_index.learning, | 209 |
| abstract_inverted_index.molecular | 69, 99, 138, 200 |
| abstract_inverted_index.networks, | 9 |
| abstract_inverted_index.optimized | 60 |
| abstract_inverted_index.outcomes, | 113 |
| abstract_inverted_index.outcomes. | 229 |
| abstract_inverted_index.patients, | 18, 241 |
| abstract_inverted_index.profiles, | 70 |
| abstract_inverted_index.profiles. | 100 |
| abstract_inverted_index.responses | 108, 225 |
| abstract_inverted_index.tailoring | 236 |
| abstract_inverted_index.targeting | 247 |
| abstract_inverted_index.therapies | 131, 238 |
| abstract_inverted_index.treatment | 112, 125, 228, 244 |
| abstract_inverted_index.xenograft | 21, 160 |
| abstract_inverted_index.classified | 216 |
| abstract_inverted_index.expression | 55, 186 |
| abstract_inverted_index.hallmarks, | 172 |
| abstract_inverted_index.individual | 68, 240 |
| abstract_inverted_index.leveraging | 182 |
| abstract_inverted_index.processes. | 75 |
| abstract_inverted_index.regulatory | 8, 156 |
| abstract_inverted_index.structures | 90 |
| abstract_inverted_index.therapies. | 121 |
| abstract_inverted_index.understand | 222 |
| abstract_inverted_index.constructed | 42 |
| abstract_inverted_index.development | 12 |
| abstract_inverted_index.integrating | 52 |
| abstract_inverted_index.potentially | 242 |
| abstract_inverted_index.interactions | 92 |
| abstract_inverted_index.optimization | 194 |
| abstract_inverted_index.personalized | 7, 102, 133, 218 |
| abstract_inverted_index.specifically | 210 |
| abstract_inverted_index.Convolutional | 82, 212 |
| abstract_inverted_index.optimization, | 78 |
| abstract_inverted_index.personalizing | 155 |
| abstract_inverted_index.cancer-related | 74 |
| abstract_inverted_index.contextualized | 47 |
| abstract_inverted_index.individualized | 95, 175 |
| abstract_inverted_index.characteristics | 201 |
| abstract_inverted_index.patient-derived | 20, 159 |
| abstract_inverted_index.sample-specific | 53 |
| cited_by_percentile_year.max | 95 |
| cited_by_percentile_year.min | 91 |
| countries_distinct_count | 0 |
| institutions_distinct_count | 4 |
| citation_normalized_percentile.value | 0.53855006 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |