Integrating Metaheuristics and Two-Tiered Classification for Enhanced Fake News Detection with Feature Optimization Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.4108/eetsis.5069
INTRODUCTION: The challenge of distributing false information continues despite the significant impact of social media on opinions. The suggested framework, which is a metaheuristic method, is presented in this research to detect bogus news. Employing a hybrid metaheuristic RDAVA methodology coupled with Bi-LSTM, the method leverages African Vulture Optimizer and Red Deer Optimizer.OBJECTIVES: The objective of this study is to assess the effectiveness of the suggested model in identifying false material on social media by employing social network analysis tools to combat disinformation.METHODS: Employing the data sets from BuzzFeed, FakeNewsNet, and ISOT, the suggested model is implemented on the MATLAB Platform and acquires high accuracy rates of 97% on FakeNewsNet and 98% on BuzzFeed and ISOT. A comparative study with current models demonstrates its superiority.RESULTS: Outperforming previous models with 98% and 97% accuracy on BuzzFeed/ISOT and FakeNewsNet, respectively, the suggested model shows remarkable performance.CONCLUSION: The proposed strategy shows promise in addressing the problem of false information on social media in the modern day by effectively countering fake news. Its incorporation of social network analysis methods and metaheuristic methodologies makes it a powerful instrument for identifying false news.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.4108/eetsis.5069
- https://publications.eai.eu/index.php/sis/article/download/5069/3093
- OA Status
- diamond
- Cited By
- 4
- References
- 41
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4393856915
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4393856915Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.4108/eetsis.5069Digital Object Identifier
- Title
-
Integrating Metaheuristics and Two-Tiered Classification for Enhanced Fake News Detection with Feature OptimizationWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-04-03Full publication date if available
- Authors
-
Poonam Narang, Ajay Vikram Singh, Himanshu MongaList of authors in order
- Landing page
-
https://doi.org/10.4108/eetsis.5069Publisher landing page
- PDF URL
-
https://publications.eai.eu/index.php/sis/article/download/5069/3093Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
diamondOpen access status per OpenAlex
- OA URL
-
https://publications.eai.eu/index.php/sis/article/download/5069/3093Direct OA link when available
- Concepts
-
Metaheuristic, Feature (linguistics), Computer science, Artificial intelligence, Pattern recognition (psychology), Linguistics, PhilosophyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
4Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 4Per-year citation counts (last 5 years)
- References (count)
-
41Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4393856915 |
|---|---|
| doi | https://doi.org/10.4108/eetsis.5069 |
| ids.doi | https://doi.org/10.4108/eetsis.5069 |
| ids.openalex | https://openalex.org/W4393856915 |
| fwci | 8.38392701 |
| type | article |
| title | Integrating Metaheuristics and Two-Tiered Classification for Enhanced Fake News Detection with Feature Optimization |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11147 |
| topics[0].field.id | https://openalex.org/fields/33 |
| topics[0].field.display_name | Social Sciences |
| topics[0].score | 1.0 |
| topics[0].domain.id | https://openalex.org/domains/2 |
| topics[0].domain.display_name | Social Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/3312 |
| topics[0].subfield.display_name | Sociology and Political Science |
| topics[0].display_name | Misinformation and Its Impacts |
| topics[1].id | https://openalex.org/T11644 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.996999979019165 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1710 |
| topics[1].subfield.display_name | Information Systems |
| topics[1].display_name | Spam and Phishing Detection |
| topics[2].id | https://openalex.org/T11241 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.98089998960495 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1711 |
| topics[2].subfield.display_name | Signal Processing |
| topics[2].display_name | Advanced Malware Detection Techniques |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C109718341 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7839739322662354 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q1385229 |
| concepts[0].display_name | Metaheuristic |
| concepts[1].id | https://openalex.org/C2776401178 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6297577023506165 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q12050496 |
| concepts[1].display_name | Feature (linguistics) |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.5759449005126953 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| concepts[3].id | https://openalex.org/C154945302 |
| concepts[3].level | 1 |
| concepts[3].score | 0.4514819085597992 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[3].display_name | Artificial intelligence |
| concepts[4].id | https://openalex.org/C153180895 |
| concepts[4].level | 2 |
| concepts[4].score | 0.4431278109550476 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[4].display_name | Pattern recognition (psychology) |
| concepts[5].id | https://openalex.org/C41895202 |
| concepts[5].level | 1 |
| concepts[5].score | 0.0 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q8162 |
| concepts[5].display_name | Linguistics |
| concepts[6].id | https://openalex.org/C138885662 |
| concepts[6].level | 0 |
| concepts[6].score | 0.0 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q5891 |
| concepts[6].display_name | Philosophy |
| keywords[0].id | https://openalex.org/keywords/metaheuristic |
| keywords[0].score | 0.7839739322662354 |
| keywords[0].display_name | Metaheuristic |
| keywords[1].id | https://openalex.org/keywords/feature |
| keywords[1].score | 0.6297577023506165 |
| keywords[1].display_name | Feature (linguistics) |
| keywords[2].id | https://openalex.org/keywords/computer-science |
| keywords[2].score | 0.5759449005126953 |
| keywords[2].display_name | Computer science |
| keywords[3].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[3].score | 0.4514819085597992 |
| keywords[3].display_name | Artificial intelligence |
| keywords[4].id | https://openalex.org/keywords/pattern-recognition |
| keywords[4].score | 0.4431278109550476 |
| keywords[4].display_name | Pattern recognition (psychology) |
| language | en |
| locations[0].id | doi:10.4108/eetsis.5069 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210240886 |
| locations[0].source.issn | 2032-9407 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2032-9407 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | ICST Transactions on Scalable Information Systems |
| locations[0].source.host_organization | https://openalex.org/P4310321145 |
| locations[0].source.host_organization_name | European Alliance for Innovation |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310321145 |
| locations[0].source.host_organization_lineage_names | European Alliance for Innovation |
| locations[0].license | cc-by-nc-sa |
| locations[0].pdf_url | https://publications.eai.eu/index.php/sis/article/download/5069/3093 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by-nc-sa |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | ICST Transactions on Scalable Information Systems |
| locations[0].landing_page_url | https://doi.org/10.4108/eetsis.5069 |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5012934403 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-9302-8333 |
| authorships[0].author.display_name | Poonam Narang |
| authorships[0].affiliations[0].raw_affiliation_string | Amity University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Poonam Narang |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Amity University |
| authorships[1].author.id | https://openalex.org/A5108053446 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-4129-647X |
| authorships[1].author.display_name | Ajay Vikram Singh |
| authorships[1].affiliations[0].raw_affiliation_string | Amity University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Ajay Vikram Singh |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Amity University |
| authorships[2].author.id | https://openalex.org/A5052396175 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-7628-4917 |
| authorships[2].author.display_name | Himanshu Monga |
| authorships[2].affiliations[0].raw_affiliation_string | Government Hydro Engineering College |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Himanshu Monga |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Government Hydro Engineering College |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://publications.eai.eu/index.php/sis/article/download/5069/3093 |
| open_access.oa_status | diamond |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Integrating Metaheuristics and Two-Tiered Classification for Enhanced Fake News Detection with Feature Optimization |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11147 |
| primary_topic.field.id | https://openalex.org/fields/33 |
| primary_topic.field.display_name | Social Sciences |
| primary_topic.score | 1.0 |
| primary_topic.domain.id | https://openalex.org/domains/2 |
| primary_topic.domain.display_name | Social Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/3312 |
| primary_topic.subfield.display_name | Sociology and Political Science |
| primary_topic.display_name | Misinformation and Its Impacts |
| related_works | https://openalex.org/W2748952813, https://openalex.org/W2789681586, https://openalex.org/W2794361564, https://openalex.org/W4243392960, https://openalex.org/W3156820950, https://openalex.org/W4232791346, https://openalex.org/W2971069100, https://openalex.org/W2033914206, https://openalex.org/W2042327336, https://openalex.org/W4386159726 |
| cited_by_count | 4 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 4 |
| locations_count | 1 |
| best_oa_location.id | doi:10.4108/eetsis.5069 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210240886 |
| best_oa_location.source.issn | 2032-9407 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2032-9407 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | ICST Transactions on Scalable Information Systems |
| best_oa_location.source.host_organization | https://openalex.org/P4310321145 |
| best_oa_location.source.host_organization_name | European Alliance for Innovation |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310321145 |
| best_oa_location.source.host_organization_lineage_names | European Alliance for Innovation |
| best_oa_location.license | cc-by-nc-sa |
| best_oa_location.pdf_url | https://publications.eai.eu/index.php/sis/article/download/5069/3093 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by-nc-sa |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | ICST Transactions on Scalable Information Systems |
| best_oa_location.landing_page_url | https://doi.org/10.4108/eetsis.5069 |
| primary_location.id | doi:10.4108/eetsis.5069 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210240886 |
| primary_location.source.issn | 2032-9407 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2032-9407 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | ICST Transactions on Scalable Information Systems |
| primary_location.source.host_organization | https://openalex.org/P4310321145 |
| primary_location.source.host_organization_name | European Alliance for Innovation |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310321145 |
| primary_location.source.host_organization_lineage_names | European Alliance for Innovation |
| primary_location.license | cc-by-nc-sa |
| primary_location.pdf_url | https://publications.eai.eu/index.php/sis/article/download/5069/3093 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by-nc-sa |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | ICST Transactions on Scalable Information Systems |
| primary_location.landing_page_url | https://doi.org/10.4108/eetsis.5069 |
| publication_date | 2024-04-03 |
| publication_year | 2024 |
| referenced_works | https://openalex.org/W3200286571, https://openalex.org/W3216370178, https://openalex.org/W3128412913, https://openalex.org/W4226502724, https://openalex.org/W3080295236, https://openalex.org/W3210538410, https://openalex.org/W4285126574, https://openalex.org/W3217318162, https://openalex.org/W4285238584, https://openalex.org/W3148001275, https://openalex.org/W3206992295, https://openalex.org/W4293235592, https://openalex.org/W3196041670, https://openalex.org/W3202099717, https://openalex.org/W3097500243, https://openalex.org/W4210299703, https://openalex.org/W4283076068, https://openalex.org/W4200097352, https://openalex.org/W3213264697, https://openalex.org/W4226056795, https://openalex.org/W3022024046, https://openalex.org/W3103912187, https://openalex.org/W3119962516, https://openalex.org/W2984545517, https://openalex.org/W3184617674, https://openalex.org/W3118824597, https://openalex.org/W3176372653, https://openalex.org/W3205684765, https://openalex.org/W3180140554, https://openalex.org/W3101908935, https://openalex.org/W3139060449, https://openalex.org/W3011016572, https://openalex.org/W3163903840, https://openalex.org/W4381835030, https://openalex.org/W4381325186, https://openalex.org/W4385627526, https://openalex.org/W4313291217, https://openalex.org/W3033843645, https://openalex.org/W2792307011, https://openalex.org/W3205958211, https://openalex.org/W3104758113 |
| referenced_works_count | 41 |
| abstract_inverted_index.A | 116 |
| abstract_inverted_index.a | 22, 35, 180 |
| abstract_inverted_index.by | 74, 163 |
| abstract_inverted_index.in | 27, 67, 149, 159 |
| abstract_inverted_index.is | 21, 25, 58, 95 |
| abstract_inverted_index.it | 179 |
| abstract_inverted_index.of | 3, 12, 55, 63, 106, 153, 170 |
| abstract_inverted_index.on | 15, 71, 97, 108, 112, 133, 156 |
| abstract_inverted_index.to | 30, 59, 80 |
| abstract_inverted_index.97% | 107, 131 |
| abstract_inverted_index.98% | 111, 129 |
| abstract_inverted_index.Its | 168 |
| abstract_inverted_index.Red | 50 |
| abstract_inverted_index.The | 1, 17, 53, 144 |
| abstract_inverted_index.and | 49, 90, 101, 110, 114, 130, 135, 175 |
| abstract_inverted_index.day | 162 |
| abstract_inverted_index.for | 183 |
| abstract_inverted_index.its | 123 |
| abstract_inverted_index.the | 9, 43, 61, 64, 84, 92, 98, 138, 151, 160 |
| abstract_inverted_index.Deer | 51 |
| abstract_inverted_index.data | 85 |
| abstract_inverted_index.fake | 166 |
| abstract_inverted_index.from | 87 |
| abstract_inverted_index.high | 103 |
| abstract_inverted_index.sets | 86 |
| abstract_inverted_index.this | 28, 56 |
| abstract_inverted_index.with | 41, 119, 128 |
| abstract_inverted_index.ISOT, | 91 |
| abstract_inverted_index.ISOT. | 115 |
| abstract_inverted_index.RDAVA | 38 |
| abstract_inverted_index.bogus | 32 |
| abstract_inverted_index.false | 5, 69, 154, 185 |
| abstract_inverted_index.makes | 178 |
| abstract_inverted_index.media | 14, 73, 158 |
| abstract_inverted_index.model | 66, 94, 140 |
| abstract_inverted_index.news. | 33, 167, 186 |
| abstract_inverted_index.rates | 105 |
| abstract_inverted_index.shows | 141, 147 |
| abstract_inverted_index.study | 57, 118 |
| abstract_inverted_index.tools | 79 |
| abstract_inverted_index.which | 20 |
| abstract_inverted_index.MATLAB | 99 |
| abstract_inverted_index.assess | 60 |
| abstract_inverted_index.combat | 81 |
| abstract_inverted_index.detect | 31 |
| abstract_inverted_index.hybrid | 36 |
| abstract_inverted_index.impact | 11 |
| abstract_inverted_index.method | 44 |
| abstract_inverted_index.models | 121, 127 |
| abstract_inverted_index.modern | 161 |
| abstract_inverted_index.social | 13, 72, 76, 157, 171 |
| abstract_inverted_index.African | 46 |
| abstract_inverted_index.Vulture | 47 |
| abstract_inverted_index.coupled | 40 |
| abstract_inverted_index.current | 120 |
| abstract_inverted_index.despite | 8 |
| abstract_inverted_index.method, | 24 |
| abstract_inverted_index.methods | 174 |
| abstract_inverted_index.network | 77, 172 |
| abstract_inverted_index.problem | 152 |
| abstract_inverted_index.promise | 148 |
| abstract_inverted_index.Bi-LSTM, | 42 |
| abstract_inverted_index.BuzzFeed | 113 |
| abstract_inverted_index.Platform | 100 |
| abstract_inverted_index.accuracy | 104, 132 |
| abstract_inverted_index.acquires | 102 |
| abstract_inverted_index.analysis | 78, 173 |
| abstract_inverted_index.material | 70 |
| abstract_inverted_index.powerful | 181 |
| abstract_inverted_index.previous | 126 |
| abstract_inverted_index.proposed | 145 |
| abstract_inverted_index.research | 29 |
| abstract_inverted_index.strategy | 146 |
| abstract_inverted_index.BuzzFeed, | 88 |
| abstract_inverted_index.Employing | 34, 83 |
| abstract_inverted_index.Optimizer | 48 |
| abstract_inverted_index.challenge | 2 |
| abstract_inverted_index.continues | 7 |
| abstract_inverted_index.employing | 75 |
| abstract_inverted_index.leverages | 45 |
| abstract_inverted_index.objective | 54 |
| abstract_inverted_index.opinions. | 16 |
| abstract_inverted_index.presented | 26 |
| abstract_inverted_index.suggested | 18, 65, 93, 139 |
| abstract_inverted_index.addressing | 150 |
| abstract_inverted_index.countering | 165 |
| abstract_inverted_index.framework, | 19 |
| abstract_inverted_index.instrument | 182 |
| abstract_inverted_index.remarkable | 142 |
| abstract_inverted_index.FakeNewsNet | 109 |
| abstract_inverted_index.comparative | 117 |
| abstract_inverted_index.effectively | 164 |
| abstract_inverted_index.identifying | 68, 184 |
| abstract_inverted_index.implemented | 96 |
| abstract_inverted_index.information | 6, 155 |
| abstract_inverted_index.methodology | 39 |
| abstract_inverted_index.significant | 10 |
| abstract_inverted_index.FakeNewsNet, | 89, 136 |
| abstract_inverted_index.demonstrates | 122 |
| abstract_inverted_index.distributing | 4 |
| abstract_inverted_index.BuzzFeed/ISOT | 134 |
| abstract_inverted_index.INTRODUCTION: | 0 |
| abstract_inverted_index.Outperforming | 125 |
| abstract_inverted_index.effectiveness | 62 |
| abstract_inverted_index.incorporation | 169 |
| abstract_inverted_index.metaheuristic | 23, 37, 176 |
| abstract_inverted_index.methodologies | 177 |
| abstract_inverted_index.respectively, | 137 |
| abstract_inverted_index.superiority.RESULTS: | 124 |
| abstract_inverted_index.Optimizer.OBJECTIVES: | 52 |
| abstract_inverted_index.disinformation.METHODS: | 82 |
| abstract_inverted_index.performance.CONCLUSION: | 143 |
| cited_by_percentile_year.max | 98 |
| cited_by_percentile_year.min | 97 |
| countries_distinct_count | 0 |
| institutions_distinct_count | 3 |
| citation_normalized_percentile.value | 0.95170945 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |