Integrating Particle Flavor into Deep Learning Models for Hadronization Article Swipe
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2312.08453
Hadronization models used in event generators are physics-inspired functions with many tunable parameters. Since we do not understand hadronization from first principles, there have been multiple proposals to improve the accuracy of hadronization models by utilizing more flexible parameterizations based on neural networks. These recent proposals have focused on the kinematic properties of hadrons, but a full model must also include particle flavor. In this paper, we show how to build a deep learning-based hadronization model that includes both kinematic (continuous) and flavor (discrete) degrees of freedom. Our approach is based on Generative Adversarial Networks and we show the performance within the context of the cluster hadronization model within the Herwig event generator.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2312.08453
- https://arxiv.org/pdf/2312.08453
- OA Status
- green
- Cited By
- 3
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4389814178
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4389814178Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2312.08453Digital Object Identifier
- Title
-
Integrating Particle Flavor into Deep Learning Models for HadronizationWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-12-13Full publication date if available
- Authors
-
J. Chan, X. Ju, Adam Kania, Benjamin Nachman, Vishnu Sangli, Andrzej SiódmokList of authors in order
- Landing page
-
https://arxiv.org/abs/2312.08453Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2312.08453Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2312.08453Direct OA link when available
- Concepts
-
Hadronization, Particle physics, Context (archaeology), Event (particle physics), Kinematics, Physics, Computer science, Artificial intelligence, Hadron, Biology, Quantum mechanics, Paleontology, Classical mechanicsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
3Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 2, 2024: 1Per-year citation counts (last 5 years)
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4389814178 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2312.08453 |
| ids.doi | https://doi.org/10.48550/arxiv.2312.08453 |
| ids.openalex | https://openalex.org/W4389814178 |
| fwci | |
| type | preprint |
| title | Integrating Particle Flavor into Deep Learning Models for Hadronization |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11986 |
| topics[0].field.id | https://openalex.org/fields/18 |
| topics[0].field.display_name | Decision Sciences |
| topics[0].score | 0.9812999963760376 |
| topics[0].domain.id | https://openalex.org/domains/2 |
| topics[0].domain.display_name | Social Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1802 |
| topics[0].subfield.display_name | Information Systems and Management |
| topics[0].display_name | Scientific Computing and Data Management |
| topics[1].id | https://openalex.org/T10048 |
| topics[1].field.id | https://openalex.org/fields/31 |
| topics[1].field.display_name | Physics and Astronomy |
| topics[1].score | 0.9746000170707703 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/3106 |
| topics[1].subfield.display_name | Nuclear and High Energy Physics |
| topics[1].display_name | Particle physics theoretical and experimental studies |
| topics[2].id | https://openalex.org/T11181 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9672999978065491 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1705 |
| topics[2].subfield.display_name | Computer Networks and Communications |
| topics[2].display_name | Advanced Data Storage Technologies |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C186022433 |
| concepts[0].level | 3 |
| concepts[0].score | 0.988906979560852 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q1456042 |
| concepts[0].display_name | Hadronization |
| concepts[1].id | https://openalex.org/C109214941 |
| concepts[1].level | 1 |
| concepts[1].score | 0.6212112903594971 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q18334 |
| concepts[1].display_name | Particle physics |
| concepts[2].id | https://openalex.org/C2779343474 |
| concepts[2].level | 2 |
| concepts[2].score | 0.5338735580444336 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q3109175 |
| concepts[2].display_name | Context (archaeology) |
| concepts[3].id | https://openalex.org/C2779662365 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5244196653366089 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q5416694 |
| concepts[3].display_name | Event (particle physics) |
| concepts[4].id | https://openalex.org/C39920418 |
| concepts[4].level | 2 |
| concepts[4].score | 0.43742120265960693 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q11476 |
| concepts[4].display_name | Kinematics |
| concepts[5].id | https://openalex.org/C121332964 |
| concepts[5].level | 0 |
| concepts[5].score | 0.41850799322128296 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[5].display_name | Physics |
| concepts[6].id | https://openalex.org/C41008148 |
| concepts[6].level | 0 |
| concepts[6].score | 0.4170927107334137 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[6].display_name | Computer science |
| concepts[7].id | https://openalex.org/C154945302 |
| concepts[7].level | 1 |
| concepts[7].score | 0.3428291082382202 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[7].display_name | Artificial intelligence |
| concepts[8].id | https://openalex.org/C19694890 |
| concepts[8].level | 2 |
| concepts[8].score | 0.23223039507865906 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q101667 |
| concepts[8].display_name | Hadron |
| concepts[9].id | https://openalex.org/C86803240 |
| concepts[9].level | 0 |
| concepts[9].score | 0.07578569650650024 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q420 |
| concepts[9].display_name | Biology |
| concepts[10].id | https://openalex.org/C62520636 |
| concepts[10].level | 1 |
| concepts[10].score | 0.0 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q944 |
| concepts[10].display_name | Quantum mechanics |
| concepts[11].id | https://openalex.org/C151730666 |
| concepts[11].level | 1 |
| concepts[11].score | 0.0 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q7205 |
| concepts[11].display_name | Paleontology |
| concepts[12].id | https://openalex.org/C74650414 |
| concepts[12].level | 1 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q11397 |
| concepts[12].display_name | Classical mechanics |
| keywords[0].id | https://openalex.org/keywords/hadronization |
| keywords[0].score | 0.988906979560852 |
| keywords[0].display_name | Hadronization |
| keywords[1].id | https://openalex.org/keywords/particle-physics |
| keywords[1].score | 0.6212112903594971 |
| keywords[1].display_name | Particle physics |
| keywords[2].id | https://openalex.org/keywords/context |
| keywords[2].score | 0.5338735580444336 |
| keywords[2].display_name | Context (archaeology) |
| keywords[3].id | https://openalex.org/keywords/event |
| keywords[3].score | 0.5244196653366089 |
| keywords[3].display_name | Event (particle physics) |
| keywords[4].id | https://openalex.org/keywords/kinematics |
| keywords[4].score | 0.43742120265960693 |
| keywords[4].display_name | Kinematics |
| keywords[5].id | https://openalex.org/keywords/physics |
| keywords[5].score | 0.41850799322128296 |
| keywords[5].display_name | Physics |
| keywords[6].id | https://openalex.org/keywords/computer-science |
| keywords[6].score | 0.4170927107334137 |
| keywords[6].display_name | Computer science |
| keywords[7].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[7].score | 0.3428291082382202 |
| keywords[7].display_name | Artificial intelligence |
| keywords[8].id | https://openalex.org/keywords/hadron |
| keywords[8].score | 0.23223039507865906 |
| keywords[8].display_name | Hadron |
| keywords[9].id | https://openalex.org/keywords/biology |
| keywords[9].score | 0.07578569650650024 |
| keywords[9].display_name | Biology |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2312.08453 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2312.08453 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2312.08453 |
| locations[1].id | doi:10.48550/arxiv.2312.08453 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | cc-by |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | https://openalex.org/licenses/cc-by |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2312.08453 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5103057546 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-7069-0295 |
| authorships[0].author.display_name | J. Chan |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Chan, Jay |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5030716890 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-9745-1638 |
| authorships[1].author.display_name | X. Ju |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Ju, Xiangyang |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5101781784 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-0364-4907 |
| authorships[2].author.display_name | Adam Kania |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Kania, Adam |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5054491740 |
| authorships[3].author.orcid | https://orcid.org/0000-0003-1024-0932 |
| authorships[3].author.display_name | Benjamin Nachman |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Nachman, Benjamin |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5092050275 |
| authorships[4].author.orcid | |
| authorships[4].author.display_name | Vishnu Sangli |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Sangli, Vishnu |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5051645646 |
| authorships[5].author.orcid | https://orcid.org/0000-0001-9614-7856 |
| authorships[5].author.display_name | Andrzej Siódmok |
| authorships[5].author_position | last |
| authorships[5].raw_author_name | Siodmok, Andrzej |
| authorships[5].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2312.08453 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Integrating Particle Flavor into Deep Learning Models for Hadronization |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T11986 |
| primary_topic.field.id | https://openalex.org/fields/18 |
| primary_topic.field.display_name | Decision Sciences |
| primary_topic.score | 0.9812999963760376 |
| primary_topic.domain.id | https://openalex.org/domains/2 |
| primary_topic.domain.display_name | Social Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1802 |
| primary_topic.subfield.display_name | Information Systems and Management |
| primary_topic.display_name | Scientific Computing and Data Management |
| related_works | https://openalex.org/W2748952813, https://openalex.org/W2952888959, https://openalex.org/W3103311685, https://openalex.org/W4214539349, https://openalex.org/W2578774119, https://openalex.org/W2153327846, https://openalex.org/W2522777979, https://openalex.org/W4231483595, https://openalex.org/W1971645124, https://openalex.org/W2080895410 |
| cited_by_count | 3 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 2 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 1 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2312.08453 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2312.08453 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2312.08453 |
| primary_location.id | pmh:oai:arXiv.org:2312.08453 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2312.08453 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2312.08453 |
| publication_date | 2023-12-13 |
| publication_year | 2023 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 55, 71 |
| abstract_inverted_index.In | 63 |
| abstract_inverted_index.by | 34 |
| abstract_inverted_index.do | 15 |
| abstract_inverted_index.in | 3 |
| abstract_inverted_index.is | 89 |
| abstract_inverted_index.of | 31, 52, 85, 103 |
| abstract_inverted_index.on | 40, 48, 91 |
| abstract_inverted_index.to | 27, 69 |
| abstract_inverted_index.we | 14, 66, 96 |
| abstract_inverted_index.Our | 87 |
| abstract_inverted_index.and | 81, 95 |
| abstract_inverted_index.are | 6 |
| abstract_inverted_index.but | 54 |
| abstract_inverted_index.how | 68 |
| abstract_inverted_index.not | 16 |
| abstract_inverted_index.the | 29, 49, 98, 101, 104, 109 |
| abstract_inverted_index.also | 59 |
| abstract_inverted_index.been | 24 |
| abstract_inverted_index.both | 78 |
| abstract_inverted_index.deep | 72 |
| abstract_inverted_index.from | 19 |
| abstract_inverted_index.full | 56 |
| abstract_inverted_index.have | 23, 46 |
| abstract_inverted_index.many | 10 |
| abstract_inverted_index.more | 36 |
| abstract_inverted_index.must | 58 |
| abstract_inverted_index.show | 67, 97 |
| abstract_inverted_index.that | 76 |
| abstract_inverted_index.this | 64 |
| abstract_inverted_index.used | 2 |
| abstract_inverted_index.with | 9 |
| abstract_inverted_index.Since | 13 |
| abstract_inverted_index.These | 43 |
| abstract_inverted_index.based | 39, 90 |
| abstract_inverted_index.build | 70 |
| abstract_inverted_index.event | 4, 111 |
| abstract_inverted_index.first | 20 |
| abstract_inverted_index.model | 57, 75, 107 |
| abstract_inverted_index.there | 22 |
| abstract_inverted_index.Herwig | 110 |
| abstract_inverted_index.flavor | 82 |
| abstract_inverted_index.models | 1, 33 |
| abstract_inverted_index.neural | 41 |
| abstract_inverted_index.paper, | 65 |
| abstract_inverted_index.recent | 44 |
| abstract_inverted_index.within | 100, 108 |
| abstract_inverted_index.cluster | 105 |
| abstract_inverted_index.context | 102 |
| abstract_inverted_index.degrees | 84 |
| abstract_inverted_index.flavor. | 62 |
| abstract_inverted_index.focused | 47 |
| abstract_inverted_index.improve | 28 |
| abstract_inverted_index.include | 60 |
| abstract_inverted_index.tunable | 11 |
| abstract_inverted_index.Networks | 94 |
| abstract_inverted_index.accuracy | 30 |
| abstract_inverted_index.approach | 88 |
| abstract_inverted_index.flexible | 37 |
| abstract_inverted_index.freedom. | 86 |
| abstract_inverted_index.hadrons, | 53 |
| abstract_inverted_index.includes | 77 |
| abstract_inverted_index.multiple | 25 |
| abstract_inverted_index.particle | 61 |
| abstract_inverted_index.functions | 8 |
| abstract_inverted_index.kinematic | 50, 79 |
| abstract_inverted_index.networks. | 42 |
| abstract_inverted_index.proposals | 26, 45 |
| abstract_inverted_index.utilizing | 35 |
| abstract_inverted_index.(discrete) | 83 |
| abstract_inverted_index.Generative | 92 |
| abstract_inverted_index.generator. | 112 |
| abstract_inverted_index.generators | 5 |
| abstract_inverted_index.properties | 51 |
| abstract_inverted_index.understand | 17 |
| abstract_inverted_index.Adversarial | 93 |
| abstract_inverted_index.parameters. | 12 |
| abstract_inverted_index.performance | 99 |
| abstract_inverted_index.principles, | 21 |
| abstract_inverted_index.(continuous) | 80 |
| abstract_inverted_index.Hadronization | 0 |
| abstract_inverted_index.hadronization | 18, 32, 74, 106 |
| abstract_inverted_index.learning-based | 73 |
| abstract_inverted_index.physics-inspired | 7 |
| abstract_inverted_index.parameterizations | 38 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 6 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/16 |
| sustainable_development_goals[0].score | 0.8199999928474426 |
| sustainable_development_goals[0].display_name | Peace, Justice and strong institutions |
| citation_normalized_percentile |