Integrating Tiny Machine Learning and Edge Computing for Real-Time Object Recognition in Industrial Robotic Arms Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.3390/engproc2025092074
By integrating visual recognition technology and multi-object recognition into robotic arms, the flexibility and automation of the production process were improved in this study. By applying tiny machine learning (TinyML) and machine vision algorithms, we integrated edge computing devices to control the robotic arms and identified objects precisely on the production line, with ultra-low energy consumption. The developed system in this study included the SparkFun Edge development board and Raspberry Pi Camera Module 3, as edge devices for data processing, image recognition, and robotic arm control. By utilizing the Edge Impulse platform for data collection, model training, and optimization, edge devices and models for use in resource-limited environments were successfully generated. Using Edge Impulse’s automated toolchain, real-time image processing and object recognition were realized. The system achieved improved recognition accuracy and operational speed, demonstrating the potential of TinyML in enhancing the intelligence of robotic arms. MariaDB was chosen for data storage. Grafana was used to design a user-friendly web interface for real-time data monitoring and visualization and immediate data analysis and system monitoring. The developed system presented a success rate of 99% during actual operation. The feasibility of combining advanced image processing technology with robotic arms in intelligent manufacturing was verified in this study. The potential of integrating machine learning and automation technologies was also confirmed for the development of future manufacturing technologies. The model provides a technical reference and ideas for future factories that require high levels of automation and intelligence.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.3390/engproc2025092074
- https://www.mdpi.com/2673-4591/92/1/74/pdf?version=1747644032
- OA Status
- gold
- References
- 1
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4410480502
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4410480502Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.3390/engproc2025092074Digital Object Identifier
- Title
-
Integrating Tiny Machine Learning and Edge Computing for Real-Time Object Recognition in Industrial Robotic ArmsWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-05-19Full publication date if available
- Authors
-
Nian-Ze Hu, Bo-An Lin, Yen-Yu Wu, Hao-Lun Huang, Yu‐Chang Lin, Chih-Chen Lin, Po-Han LuList of authors in order
- Landing page
-
https://doi.org/10.3390/engproc2025092074Publisher landing page
- PDF URL
-
https://www.mdpi.com/2673-4591/92/1/74/pdf?version=1747644032Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://www.mdpi.com/2673-4591/92/1/74/pdf?version=1747644032Direct OA link when available
- Concepts
-
Computer science, Enhanced Data Rates for GSM Evolution, Artificial intelligence, Edge computing, Object (grammar), Cognitive neuroscience of visual object recognition, Computer vision, Human–computer interactionTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
1Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4410480502 |
|---|---|
| doi | https://doi.org/10.3390/engproc2025092074 |
| ids.doi | https://doi.org/10.3390/engproc2025092074 |
| ids.openalex | https://openalex.org/W4410480502 |
| fwci | 0.0 |
| type | article |
| title | Integrating Tiny Machine Learning and Edge Computing for Real-Time Object Recognition in Industrial Robotic Arms |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | 74 |
| biblio.first_page | 74 |
| topics[0].id | https://openalex.org/T14319 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.8090000152587891 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1707 |
| topics[0].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[0].display_name | Currency Recognition and Detection |
| topics[1].id | https://openalex.org/T14339 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.7853000164031982 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1707 |
| topics[1].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[1].display_name | Image Processing and 3D Reconstruction |
| topics[2].id | https://openalex.org/T13382 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.7818999886512756 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2207 |
| topics[2].subfield.display_name | Control and Systems Engineering |
| topics[2].display_name | Robotics and Automated Systems |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.7296048402786255 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C162307627 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6329041123390198 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q204833 |
| concepts[1].display_name | Enhanced Data Rates for GSM Evolution |
| concepts[2].id | https://openalex.org/C154945302 |
| concepts[2].level | 1 |
| concepts[2].score | 0.5888182520866394 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[2].display_name | Artificial intelligence |
| concepts[3].id | https://openalex.org/C2778456923 |
| concepts[3].level | 3 |
| concepts[3].score | 0.5541530847549438 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q5337692 |
| concepts[3].display_name | Edge computing |
| concepts[4].id | https://openalex.org/C2781238097 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5445159077644348 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q175026 |
| concepts[4].display_name | Object (grammar) |
| concepts[5].id | https://openalex.org/C64876066 |
| concepts[5].level | 3 |
| concepts[5].score | 0.5121921896934509 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q5141226 |
| concepts[5].display_name | Cognitive neuroscience of visual object recognition |
| concepts[6].id | https://openalex.org/C31972630 |
| concepts[6].level | 1 |
| concepts[6].score | 0.4897063076496124 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q844240 |
| concepts[6].display_name | Computer vision |
| concepts[7].id | https://openalex.org/C107457646 |
| concepts[7].level | 1 |
| concepts[7].score | 0.3964957594871521 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q207434 |
| concepts[7].display_name | Human–computer interaction |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.7296048402786255 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/enhanced-data-rates-for-gsm-evolution |
| keywords[1].score | 0.6329041123390198 |
| keywords[1].display_name | Enhanced Data Rates for GSM Evolution |
| keywords[2].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[2].score | 0.5888182520866394 |
| keywords[2].display_name | Artificial intelligence |
| keywords[3].id | https://openalex.org/keywords/edge-computing |
| keywords[3].score | 0.5541530847549438 |
| keywords[3].display_name | Edge computing |
| keywords[4].id | https://openalex.org/keywords/object |
| keywords[4].score | 0.5445159077644348 |
| keywords[4].display_name | Object (grammar) |
| keywords[5].id | https://openalex.org/keywords/cognitive-neuroscience-of-visual-object-recognition |
| keywords[5].score | 0.5121921896934509 |
| keywords[5].display_name | Cognitive neuroscience of visual object recognition |
| keywords[6].id | https://openalex.org/keywords/computer-vision |
| keywords[6].score | 0.4897063076496124 |
| keywords[6].display_name | Computer vision |
| keywords[7].id | https://openalex.org/keywords/human–computer-interaction |
| keywords[7].score | 0.3964957594871521 |
| keywords[7].display_name | Human–computer interaction |
| language | en |
| locations[0].id | doi:10.3390/engproc2025092074 |
| locations[0].is_oa | True |
| locations[0].source | |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://www.mdpi.com/2673-4591/92/1/74/pdf?version=1747644032 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | proceedings-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | 2024 IEEE 6th Eurasia Conference on IoT, Communication and Engineering |
| locations[0].landing_page_url | https://doi.org/10.3390/engproc2025092074 |
| locations[1].id | pmh:oai:doaj.org/article:e6717ef4e66447c2a664b41128d3777c |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | Engineering Proceedings, Vol 92, Iss 1, p 74 (2025) |
| locations[1].landing_page_url | https://doaj.org/article/e6717ef4e66447c2a664b41128d3777c |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5082053405 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Nian-Ze Hu |
| authorships[0].countries | TW |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I40689657 |
| authorships[0].affiliations[0].raw_affiliation_string | Department of Information Management, National Formosa University, Yunlin 63201, Taiwan |
| authorships[0].affiliations[1].institution_ids | https://openalex.org/I40689657 |
| authorships[0].affiliations[1].raw_affiliation_string | Smart Machinery and Intelligent Manufacturing Research Center, National Formosa University, Yunlin 63201, Taiwan |
| authorships[0].institutions[0].id | https://openalex.org/I40689657 |
| authorships[0].institutions[0].ror | https://ror.org/00q523p52 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I40689657 |
| authorships[0].institutions[0].country_code | TW |
| authorships[0].institutions[0].display_name | National Formosa University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Nian-Ze Hu |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Department of Information Management, National Formosa University, Yunlin 63201, Taiwan, Smart Machinery and Intelligent Manufacturing Research Center, National Formosa University, Yunlin 63201, Taiwan |
| authorships[1].author.id | https://openalex.org/A5056355257 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Bo-An Lin |
| authorships[1].countries | TW |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I40689657 |
| authorships[1].affiliations[0].raw_affiliation_string | Department of Information Management, National Formosa University, Yunlin 63201, Taiwan |
| authorships[1].institutions[0].id | https://openalex.org/I40689657 |
| authorships[1].institutions[0].ror | https://ror.org/00q523p52 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I40689657 |
| authorships[1].institutions[0].country_code | TW |
| authorships[1].institutions[0].display_name | National Formosa University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Bo-An Lin |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Department of Information Management, National Formosa University, Yunlin 63201, Taiwan |
| authorships[2].author.id | https://openalex.org/A5005431964 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Yen-Yu Wu |
| authorships[2].countries | TW |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I40689657 |
| authorships[2].affiliations[0].raw_affiliation_string | Department of Information Management, National Formosa University, Yunlin 63201, Taiwan |
| authorships[2].institutions[0].id | https://openalex.org/I40689657 |
| authorships[2].institutions[0].ror | https://ror.org/00q523p52 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I40689657 |
| authorships[2].institutions[0].country_code | TW |
| authorships[2].institutions[0].display_name | National Formosa University |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Yen-Yu Wu |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Department of Information Management, National Formosa University, Yunlin 63201, Taiwan |
| authorships[3].author.id | https://openalex.org/A5103174273 |
| authorships[3].author.orcid | https://orcid.org/0009-0007-8758-1520 |
| authorships[3].author.display_name | Hao-Lun Huang |
| authorships[3].countries | TW |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I40689657 |
| authorships[3].affiliations[0].raw_affiliation_string | Department of Information Management, National Formosa University, Yunlin 63201, Taiwan |
| authorships[3].institutions[0].id | https://openalex.org/I40689657 |
| authorships[3].institutions[0].ror | https://ror.org/00q523p52 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I40689657 |
| authorships[3].institutions[0].country_code | TW |
| authorships[3].institutions[0].display_name | National Formosa University |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Hao-Lun Huang |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Department of Information Management, National Formosa University, Yunlin 63201, Taiwan |
| authorships[4].author.id | https://openalex.org/A5025086029 |
| authorships[4].author.orcid | https://orcid.org/0000-0001-7531-9591 |
| authorships[4].author.display_name | Yu‐Chang Lin |
| authorships[4].countries | TW |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I40689657 |
| authorships[4].affiliations[0].raw_affiliation_string | Department of Information Management, National Formosa University, Yunlin 63201, Taiwan |
| authorships[4].institutions[0].id | https://openalex.org/I40689657 |
| authorships[4].institutions[0].ror | https://ror.org/00q523p52 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I40689657 |
| authorships[4].institutions[0].country_code | TW |
| authorships[4].institutions[0].display_name | National Formosa University |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | You-Xin Lin |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Department of Information Management, National Formosa University, Yunlin 63201, Taiwan |
| authorships[5].author.id | https://openalex.org/A5100507319 |
| authorships[5].author.orcid | |
| authorships[5].author.display_name | Chih-Chen Lin |
| authorships[5].countries | TW |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I40689657 |
| authorships[5].affiliations[0].raw_affiliation_string | Department of Information Management, National Formosa University, Yunlin 63201, Taiwan |
| authorships[5].institutions[0].id | https://openalex.org/I40689657 |
| authorships[5].institutions[0].ror | https://ror.org/00q523p52 |
| authorships[5].institutions[0].type | education |
| authorships[5].institutions[0].lineage | https://openalex.org/I40689657 |
| authorships[5].institutions[0].country_code | TW |
| authorships[5].institutions[0].display_name | National Formosa University |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Chih-Chen Lin |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | Department of Information Management, National Formosa University, Yunlin 63201, Taiwan |
| authorships[6].author.id | https://openalex.org/A5111301746 |
| authorships[6].author.orcid | |
| authorships[6].author.display_name | Po-Han Lu |
| authorships[6].countries | TW |
| authorships[6].affiliations[0].institution_ids | https://openalex.org/I40689657 |
| authorships[6].affiliations[0].raw_affiliation_string | Department of Information Management, National Formosa University, Yunlin 63201, Taiwan |
| authorships[6].institutions[0].id | https://openalex.org/I40689657 |
| authorships[6].institutions[0].ror | https://ror.org/00q523p52 |
| authorships[6].institutions[0].type | education |
| authorships[6].institutions[0].lineage | https://openalex.org/I40689657 |
| authorships[6].institutions[0].country_code | TW |
| authorships[6].institutions[0].display_name | National Formosa University |
| authorships[6].author_position | last |
| authorships[6].raw_author_name | Po-Han Lu |
| authorships[6].is_corresponding | False |
| authorships[6].raw_affiliation_strings | Department of Information Management, National Formosa University, Yunlin 63201, Taiwan |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.mdpi.com/2673-4591/92/1/74/pdf?version=1747644032 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Integrating Tiny Machine Learning and Edge Computing for Real-Time Object Recognition in Industrial Robotic Arms |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T14319 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.8090000152587891 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1707 |
| primary_topic.subfield.display_name | Computer Vision and Pattern Recognition |
| primary_topic.display_name | Currency Recognition and Detection |
| related_works | https://openalex.org/W4324372666, https://openalex.org/W2114275278, https://openalex.org/W4225706866, https://openalex.org/W2914646191, https://openalex.org/W3023564924, https://openalex.org/W2942586735, https://openalex.org/W1489511283, https://openalex.org/W2974914859, https://openalex.org/W2026565050, https://openalex.org/W2110244802 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | doi:10.3390/engproc2025092074 |
| best_oa_location.is_oa | True |
| best_oa_location.source | |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://www.mdpi.com/2673-4591/92/1/74/pdf?version=1747644032 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | proceedings-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | 2024 IEEE 6th Eurasia Conference on IoT, Communication and Engineering |
| best_oa_location.landing_page_url | https://doi.org/10.3390/engproc2025092074 |
| primary_location.id | doi:10.3390/engproc2025092074 |
| primary_location.is_oa | True |
| primary_location.source | |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://www.mdpi.com/2673-4591/92/1/74/pdf?version=1747644032 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | proceedings-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | 2024 IEEE 6th Eurasia Conference on IoT, Communication and Engineering |
| primary_location.landing_page_url | https://doi.org/10.3390/engproc2025092074 |
| publication_date | 2025-05-19 |
| publication_year | 2025 |
| referenced_works | https://openalex.org/W2151218665 |
| referenced_works_count | 1 |
| abstract_inverted_index.a | 156, 177, 226 |
| abstract_inverted_index.3, | 73 |
| abstract_inverted_index.By | 0, 24, 86 |
| abstract_inverted_index.Pi | 70 |
| abstract_inverted_index.as | 74 |
| abstract_inverted_index.in | 21, 59, 105, 138, 196, 201 |
| abstract_inverted_index.of | 15, 136, 142, 180, 187, 206, 219, 238 |
| abstract_inverted_index.on | 48 |
| abstract_inverted_index.to | 39, 154 |
| abstract_inverted_index.we | 34 |
| abstract_inverted_index.99% | 181 |
| abstract_inverted_index.The | 56, 124, 173, 185, 204, 223 |
| abstract_inverted_index.and | 5, 13, 30, 44, 68, 82, 97, 101, 119, 130, 164, 166, 170, 210, 229, 240 |
| abstract_inverted_index.arm | 84 |
| abstract_inverted_index.for | 77, 92, 103, 148, 160, 216, 231 |
| abstract_inverted_index.the | 11, 16, 41, 49, 63, 88, 134, 140, 217 |
| abstract_inverted_index.use | 104 |
| abstract_inverted_index.was | 146, 152, 199, 213 |
| abstract_inverted_index.web | 158 |
| abstract_inverted_index.Edge | 65, 89, 112 |
| abstract_inverted_index.also | 214 |
| abstract_inverted_index.arms | 43, 195 |
| abstract_inverted_index.data | 78, 93, 149, 162, 168 |
| abstract_inverted_index.edge | 36, 75, 99 |
| abstract_inverted_index.high | 236 |
| abstract_inverted_index.into | 8 |
| abstract_inverted_index.rate | 179 |
| abstract_inverted_index.that | 234 |
| abstract_inverted_index.this | 22, 60, 202 |
| abstract_inverted_index.tiny | 26 |
| abstract_inverted_index.used | 153 |
| abstract_inverted_index.were | 19, 108, 122 |
| abstract_inverted_index.with | 52, 193 |
| abstract_inverted_index.Using | 111 |
| abstract_inverted_index.arms, | 10 |
| abstract_inverted_index.arms. | 144 |
| abstract_inverted_index.board | 67 |
| abstract_inverted_index.ideas | 230 |
| abstract_inverted_index.image | 80, 117, 190 |
| abstract_inverted_index.line, | 51 |
| abstract_inverted_index.model | 95, 224 |
| abstract_inverted_index.study | 61 |
| abstract_inverted_index.Camera | 71 |
| abstract_inverted_index.Module | 72 |
| abstract_inverted_index.TinyML | 137 |
| abstract_inverted_index.actual | 183 |
| abstract_inverted_index.chosen | 147 |
| abstract_inverted_index.design | 155 |
| abstract_inverted_index.during | 182 |
| abstract_inverted_index.energy | 54 |
| abstract_inverted_index.future | 220, 232 |
| abstract_inverted_index.levels | 237 |
| abstract_inverted_index.models | 102 |
| abstract_inverted_index.object | 120 |
| abstract_inverted_index.speed, | 132 |
| abstract_inverted_index.study. | 23, 203 |
| abstract_inverted_index.system | 58, 125, 171, 175 |
| abstract_inverted_index.vision | 32 |
| abstract_inverted_index.visual | 2 |
| abstract_inverted_index.Grafana | 151 |
| abstract_inverted_index.Impulse | 90 |
| abstract_inverted_index.MariaDB | 145 |
| abstract_inverted_index.control | 40 |
| abstract_inverted_index.devices | 38, 76, 100 |
| abstract_inverted_index.machine | 27, 31, 208 |
| abstract_inverted_index.objects | 46 |
| abstract_inverted_index.process | 18 |
| abstract_inverted_index.require | 235 |
| abstract_inverted_index.robotic | 9, 42, 83, 143, 194 |
| abstract_inverted_index.success | 178 |
| abstract_inverted_index.(TinyML) | 29 |
| abstract_inverted_index.SparkFun | 64 |
| abstract_inverted_index.accuracy | 129 |
| abstract_inverted_index.achieved | 126 |
| abstract_inverted_index.advanced | 189 |
| abstract_inverted_index.analysis | 169 |
| abstract_inverted_index.applying | 25 |
| abstract_inverted_index.control. | 85 |
| abstract_inverted_index.improved | 20, 127 |
| abstract_inverted_index.included | 62 |
| abstract_inverted_index.learning | 28, 209 |
| abstract_inverted_index.platform | 91 |
| abstract_inverted_index.provides | 225 |
| abstract_inverted_index.storage. | 150 |
| abstract_inverted_index.verified | 200 |
| abstract_inverted_index.Raspberry | 69 |
| abstract_inverted_index.automated | 114 |
| abstract_inverted_index.combining | 188 |
| abstract_inverted_index.computing | 37 |
| abstract_inverted_index.confirmed | 215 |
| abstract_inverted_index.developed | 57, 174 |
| abstract_inverted_index.enhancing | 139 |
| abstract_inverted_index.factories | 233 |
| abstract_inverted_index.immediate | 167 |
| abstract_inverted_index.interface | 159 |
| abstract_inverted_index.potential | 135, 205 |
| abstract_inverted_index.precisely | 47 |
| abstract_inverted_index.presented | 176 |
| abstract_inverted_index.real-time | 116, 161 |
| abstract_inverted_index.realized. | 123 |
| abstract_inverted_index.reference | 228 |
| abstract_inverted_index.technical | 227 |
| abstract_inverted_index.training, | 96 |
| abstract_inverted_index.ultra-low | 53 |
| abstract_inverted_index.utilizing | 87 |
| abstract_inverted_index.automation | 14, 211, 239 |
| abstract_inverted_index.generated. | 110 |
| abstract_inverted_index.identified | 45 |
| abstract_inverted_index.integrated | 35 |
| abstract_inverted_index.monitoring | 163 |
| abstract_inverted_index.operation. | 184 |
| abstract_inverted_index.processing | 118, 191 |
| abstract_inverted_index.production | 17, 50 |
| abstract_inverted_index.technology | 4, 192 |
| abstract_inverted_index.toolchain, | 115 |
| abstract_inverted_index.Impulse’s | 113 |
| abstract_inverted_index.algorithms, | 33 |
| abstract_inverted_index.collection, | 94 |
| abstract_inverted_index.development | 66, 218 |
| abstract_inverted_index.feasibility | 186 |
| abstract_inverted_index.flexibility | 12 |
| abstract_inverted_index.integrating | 1, 207 |
| abstract_inverted_index.intelligent | 197 |
| abstract_inverted_index.monitoring. | 172 |
| abstract_inverted_index.operational | 131 |
| abstract_inverted_index.processing, | 79 |
| abstract_inverted_index.recognition | 3, 7, 121, 128 |
| abstract_inverted_index.consumption. | 55 |
| abstract_inverted_index.environments | 107 |
| abstract_inverted_index.intelligence | 141 |
| abstract_inverted_index.multi-object | 6 |
| abstract_inverted_index.recognition, | 81 |
| abstract_inverted_index.successfully | 109 |
| abstract_inverted_index.technologies | 212 |
| abstract_inverted_index.demonstrating | 133 |
| abstract_inverted_index.intelligence. | 241 |
| abstract_inverted_index.manufacturing | 198, 221 |
| abstract_inverted_index.optimization, | 98 |
| abstract_inverted_index.technologies. | 222 |
| abstract_inverted_index.user-friendly | 157 |
| abstract_inverted_index.visualization | 165 |
| abstract_inverted_index.resource-limited | 106 |
| cited_by_percentile_year | |
| countries_distinct_count | 1 |
| institutions_distinct_count | 7 |
| citation_normalized_percentile.value | 0.16948767 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |