Integration of intratumoral/peritumoral radiomics and deep learning for predicting overall survival in non-small cell lung cancer patients: a multicenter study Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.3389/fonc.2025.1669200
Background Prognostic assessment of non-small cell lung cancer (NSCLC) relies on TNM staging, yet tumor heterogeneity limits its accuracy. This study aimed to develop a model for improving the prediction of overall survival (OS) in NSCLC patients receiving radiotherapy, which integrated intratumoral/peritumoral radiomics features and 3D deep learning (DL) features. Methods A total of 303 NSCLC patients from three centers were retrospectively enrolled. Radiomics features were extracted from intratumoral and 3/6/9 mm peritumoral regions on CT scans. A network named 3D-SE-ResNet was proposed to extract DL features. Lasso-Cox and principal component analysis (PCA) were used to integrate multidimensional features to establish a combined model. Performance was evaluated via the concordance index (C-index) and area under the curve (AUC). Survival differences were visualized through Kaplan–Meier curves. Results The 6 mm expansion peritumoral radiomics features analysis showed the best performance (C-index: 0.63). The DL features outperformed the radiomics features (C-index: 0.74 vs 0.63). The combined model achieved the highest accuracy (C-index: 0.77/0.73 across datasets). K–M analysis confirmed significant survival differences (log-rank P < 0.001). Conclusion The combined model integrates intratumoral/peritumoral radiomics features and 3D DL features and effectively predicts the OS of NSCLC patients, offering a novel tool for personalized radiotherapy strategies.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.3389/fonc.2025.1669200
- OA Status
- gold
- References
- 37
- OpenAlex ID
- https://openalex.org/W4416384327
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4416384327Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.3389/fonc.2025.1669200Digital Object Identifier
- Title
-
Integration of intratumoral/peritumoral radiomics and deep learning for predicting overall survival in non-small cell lung cancer patients: a multicenter studyWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-11-20Full publication date if available
- Authors
-
Yong-Xin Liu, Yuteng Pan, Qiusheng Wang, Huijuan Zhang, Yinglun Sun, Jianfeng Qiu, Fuli ZhangList of authors in order
- Landing page
-
https://doi.org/10.3389/fonc.2025.1669200Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.3389/fonc.2025.1669200Direct OA link when available
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
37Number of works referenced by this work
Full payload
| id | https://openalex.org/W4416384327 |
|---|---|
| doi | https://doi.org/10.3389/fonc.2025.1669200 |
| ids.doi | https://doi.org/10.3389/fonc.2025.1669200 |
| ids.openalex | https://openalex.org/W4416384327 |
| fwci | 0.0 |
| type | article |
| title | Integration of intratumoral/peritumoral radiomics and deep learning for predicting overall survival in non-small cell lung cancer patients: a multicenter study |
| biblio.issue | |
| biblio.volume | 15 |
| biblio.last_page | |
| biblio.first_page | |
| is_xpac | False |
| apc_list.value | 2950 |
| apc_list.currency | USD |
| apc_list.value_usd | 2950 |
| apc_paid.value | 2950 |
| apc_paid.currency | USD |
| apc_paid.value_usd | 2950 |
| language | en |
| locations[0].id | doi:10.3389/fonc.2025.1669200 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S2596394214 |
| locations[0].source.issn | 2234-943X |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2234-943X |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Frontiers in Oncology |
| locations[0].source.host_organization | https://openalex.org/P4310320527 |
| locations[0].source.host_organization_name | Frontiers Media |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320527 |
| locations[0].license | cc-by |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Frontiers in Oncology |
| locations[0].landing_page_url | https://doi.org/10.3389/fonc.2025.1669200 |
| locations[1].id | pmh:oai:doaj.org/article:84a43cffa873485e856079f46d66b3ee |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].source.host_organization_lineage | |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | Frontiers in Oncology, Vol 15 (2025) |
| locations[1].landing_page_url | https://doaj.org/article/84a43cffa873485e856079f46d66b3ee |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5100765916 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-6506-7148 |
| authorships[0].author.display_name | Yong-Xin Liu |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I2802939634, https://openalex.org/I4210160531 |
| authorships[0].affiliations[0].raw_affiliation_string | Radiation Oncology Department, The Seventh Medical Center of Chinese People's Liberation Army PLA General Hospital, Beijing, China |
| authorships[0].affiliations[1].institution_ids | https://openalex.org/I4210163399 |
| authorships[0].affiliations[1].raw_affiliation_string | School of Radiology, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian, China |
| authorships[0].institutions[0].id | https://openalex.org/I2802939634 |
| authorships[0].institutions[0].ror | https://ror.org/04gw3ra78 |
| authorships[0].institutions[0].type | healthcare |
| authorships[0].institutions[0].lineage | https://openalex.org/I2802939634 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Chinese PLA General Hospital |
| authorships[0].institutions[1].id | https://openalex.org/I4210160531 |
| authorships[0].institutions[1].ror | https://ror.org/05tf9r976 |
| authorships[0].institutions[1].type | government |
| authorships[0].institutions[1].lineage | https://openalex.org/I4210160531 |
| authorships[0].institutions[1].country_code | CN |
| authorships[0].institutions[1].display_name | Chinese People's Liberation Army |
| authorships[0].institutions[2].id | https://openalex.org/I4210163399 |
| authorships[0].institutions[2].ror | https://ror.org/05jb9pq57 |
| authorships[0].institutions[2].type | education |
| authorships[0].institutions[2].lineage | https://openalex.org/I4210163399 |
| authorships[0].institutions[2].country_code | CN |
| authorships[0].institutions[2].display_name | Shandong First Medical University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Yongxin Liu |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Radiation Oncology Department, The Seventh Medical Center of Chinese People's Liberation Army PLA General Hospital, Beijing, China, School of Radiology, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian, China |
| authorships[1].author.id | https://openalex.org/A5088870954 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Yuteng Pan |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I4210163399 |
| authorships[1].affiliations[0].raw_affiliation_string | School of Radiology, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian, China |
| authorships[1].institutions[0].id | https://openalex.org/I4210163399 |
| authorships[1].institutions[0].ror | https://ror.org/05jb9pq57 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I4210163399 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Shandong First Medical University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Yuteng Pan |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | School of Radiology, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian, China |
| authorships[2].author.id | https://openalex.org/A5021363210 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-3197-6327 |
| authorships[2].author.display_name | Qiusheng Wang |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I82880672 |
| authorships[2].affiliations[0].raw_affiliation_string | School of Automation Science and Electrical Engineering, Beihang University, Beijing, China |
| authorships[2].institutions[0].id | https://openalex.org/I82880672 |
| authorships[2].institutions[0].ror | https://ror.org/00wk2mp56 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I82880672 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | Beihang University |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Qiusheng Wang |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | School of Automation Science and Electrical Engineering, Beihang University, Beijing, China |
| authorships[3].author.id | https://openalex.org/A5100420327 |
| authorships[3].author.orcid | https://orcid.org/0000-0003-3060-4246 |
| authorships[3].author.display_name | Huijuan Zhang |
| authorships[3].countries | CN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I2802939634, https://openalex.org/I4210160531 |
| authorships[3].affiliations[0].raw_affiliation_string | Radiation Oncology Department, The Seventh Medical Center of Chinese People's Liberation Army PLA General Hospital, Beijing, China |
| authorships[3].institutions[0].id | https://openalex.org/I2802939634 |
| authorships[3].institutions[0].ror | https://ror.org/04gw3ra78 |
| authorships[3].institutions[0].type | healthcare |
| authorships[3].institutions[0].lineage | https://openalex.org/I2802939634 |
| authorships[3].institutions[0].country_code | CN |
| authorships[3].institutions[0].display_name | Chinese PLA General Hospital |
| authorships[3].institutions[1].id | https://openalex.org/I4210160531 |
| authorships[3].institutions[1].ror | https://ror.org/05tf9r976 |
| authorships[3].institutions[1].type | government |
| authorships[3].institutions[1].lineage | https://openalex.org/I4210160531 |
| authorships[3].institutions[1].country_code | CN |
| authorships[3].institutions[1].display_name | Chinese People's Liberation Army |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Huijuan Zhang |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Radiation Oncology Department, The Seventh Medical Center of Chinese People's Liberation Army PLA General Hospital, Beijing, China |
| authorships[4].author.id | https://openalex.org/A5035259194 |
| authorships[4].author.orcid | |
| authorships[4].author.display_name | Yinglun Sun |
| authorships[4].countries | CN |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I4210163399 |
| authorships[4].affiliations[0].raw_affiliation_string | School of Radiology, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian, China |
| authorships[4].institutions[0].id | https://openalex.org/I4210163399 |
| authorships[4].institutions[0].ror | https://ror.org/05jb9pq57 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I4210163399 |
| authorships[4].institutions[0].country_code | CN |
| authorships[4].institutions[0].display_name | Shandong First Medical University |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Yinglun Sun |
| authorships[4].is_corresponding | True |
| authorships[4].raw_affiliation_strings | School of Radiology, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian, China |
| authorships[5].author.id | https://openalex.org/A5003138485 |
| authorships[5].author.orcid | https://orcid.org/0000-0002-8049-3743 |
| authorships[5].author.display_name | Jianfeng Qiu |
| authorships[5].countries | CN |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I4210159257 |
| authorships[5].affiliations[0].raw_affiliation_string | The First Affiliated Hospital of Shandong First Medical University, Jinan, China |
| authorships[5].institutions[0].id | https://openalex.org/I4210159257 |
| authorships[5].institutions[0].ror | https://ror.org/052q26725 |
| authorships[5].institutions[0].type | healthcare |
| authorships[5].institutions[0].lineage | https://openalex.org/I4210159257 |
| authorships[5].institutions[0].country_code | CN |
| authorships[5].institutions[0].display_name | Affiliated Hospital of Shandong University of Traditional Chinese Medicine |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Jianfeng Qiu |
| authorships[5].is_corresponding | True |
| authorships[5].raw_affiliation_strings | The First Affiliated Hospital of Shandong First Medical University, Jinan, China |
| authorships[6].author.id | https://openalex.org/A5058225779 |
| authorships[6].author.orcid | https://orcid.org/0000-0002-4175-4795 |
| authorships[6].author.display_name | Fuli Zhang |
| authorships[6].countries | CN |
| authorships[6].affiliations[0].institution_ids | https://openalex.org/I2802939634, https://openalex.org/I4210160531 |
| authorships[6].affiliations[0].raw_affiliation_string | Radiation Oncology Department, The Seventh Medical Center of Chinese People's Liberation Army PLA General Hospital, Beijing, China |
| authorships[6].institutions[0].id | https://openalex.org/I2802939634 |
| authorships[6].institutions[0].ror | https://ror.org/04gw3ra78 |
| authorships[6].institutions[0].type | healthcare |
| authorships[6].institutions[0].lineage | https://openalex.org/I2802939634 |
| authorships[6].institutions[0].country_code | CN |
| authorships[6].institutions[0].display_name | Chinese PLA General Hospital |
| authorships[6].institutions[1].id | https://openalex.org/I4210160531 |
| authorships[6].institutions[1].ror | https://ror.org/05tf9r976 |
| authorships[6].institutions[1].type | government |
| authorships[6].institutions[1].lineage | https://openalex.org/I4210160531 |
| authorships[6].institutions[1].country_code | CN |
| authorships[6].institutions[1].display_name | Chinese People's Liberation Army |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Fuli Zhang |
| authorships[6].is_corresponding | True |
| authorships[6].raw_affiliation_strings | Radiation Oncology Department, The Seventh Medical Center of Chinese People's Liberation Army PLA General Hospital, Beijing, China |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.3389/fonc.2025.1669200 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-11-20T00:00:00 |
| display_name | Integration of intratumoral/peritumoral radiomics and deep learning for predicting overall survival in non-small cell lung cancer patients: a multicenter study |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-28T12:40:20.434941 |
| primary_topic | |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | doi:10.3389/fonc.2025.1669200 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S2596394214 |
| best_oa_location.source.issn | 2234-943X |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2234-943X |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Frontiers in Oncology |
| best_oa_location.source.host_organization | https://openalex.org/P4310320527 |
| best_oa_location.source.host_organization_name | Frontiers Media |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310320527 |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Frontiers in Oncology |
| best_oa_location.landing_page_url | https://doi.org/10.3389/fonc.2025.1669200 |
| primary_location.id | doi:10.3389/fonc.2025.1669200 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S2596394214 |
| primary_location.source.issn | 2234-943X |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2234-943X |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Frontiers in Oncology |
| primary_location.source.host_organization | https://openalex.org/P4310320527 |
| primary_location.source.host_organization_name | Frontiers Media |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320527 |
| primary_location.license | cc-by |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Frontiers in Oncology |
| primary_location.landing_page_url | https://doi.org/10.3389/fonc.2025.1669200 |
| publication_date | 2025-11-20 |
| publication_year | 2025 |
| referenced_works | https://openalex.org/W4206841660, https://openalex.org/W4393935425, https://openalex.org/W4295079305, https://openalex.org/W3033843978, https://openalex.org/W2995072671, https://openalex.org/W4396955535, https://openalex.org/W2947780266, https://openalex.org/W2228221433, https://openalex.org/W2128739912, https://openalex.org/W4288060250, https://openalex.org/W4297256306, https://openalex.org/W2006213157, https://openalex.org/W2060248796, https://openalex.org/W2600758622, https://openalex.org/W2924086752, https://openalex.org/W4294675960, https://openalex.org/W4307585358, https://openalex.org/W4404065761, https://openalex.org/W4386084734, https://openalex.org/W4409361858, https://openalex.org/W4390519917, https://openalex.org/W2912884588, https://openalex.org/W3184174481, https://openalex.org/W6977944434, https://openalex.org/W2753919178, https://openalex.org/W4214842939, https://openalex.org/W4304631545, https://openalex.org/W2032154159, https://openalex.org/W3038121899, https://openalex.org/W3196124991, https://openalex.org/W4387860324, https://openalex.org/W4388776397, https://openalex.org/W4390060066, https://openalex.org/W2963420686, https://openalex.org/W4390615902, https://openalex.org/W4404393410, https://openalex.org/W4284887404 |
| referenced_works_count | 37 |
| abstract_inverted_index.6 | 127 |
| abstract_inverted_index.A | 51, 77 |
| abstract_inverted_index.P | 169 |
| abstract_inverted_index.a | 24, 101, 193 |
| abstract_inverted_index.3D | 45, 181 |
| abstract_inverted_index.CT | 75 |
| abstract_inverted_index.DL | 85, 141, 182 |
| abstract_inverted_index.OS | 188 |
| abstract_inverted_index.in | 34 |
| abstract_inverted_index.mm | 71, 128 |
| abstract_inverted_index.of | 3, 30, 53, 189 |
| abstract_inverted_index.on | 10, 74 |
| abstract_inverted_index.to | 22, 83, 95, 99 |
| abstract_inverted_index.vs | 149 |
| abstract_inverted_index.303 | 54 |
| abstract_inverted_index.TNM | 11 |
| abstract_inverted_index.The | 126, 140, 151, 173 |
| abstract_inverted_index.and | 44, 69, 88, 112, 180, 184 |
| abstract_inverted_index.for | 26, 196 |
| abstract_inverted_index.its | 17 |
| abstract_inverted_index.the | 28, 108, 115, 135, 144, 155, 187 |
| abstract_inverted_index.via | 107 |
| abstract_inverted_index.was | 81, 105 |
| abstract_inverted_index.yet | 13 |
| abstract_inverted_index.(DL) | 48 |
| abstract_inverted_index.(OS) | 33 |
| abstract_inverted_index.0.74 | 148 |
| abstract_inverted_index.This | 19 |
| abstract_inverted_index.area | 113 |
| abstract_inverted_index.best | 136 |
| abstract_inverted_index.cell | 5 |
| abstract_inverted_index.deep | 46 |
| abstract_inverted_index.from | 57, 67 |
| abstract_inverted_index.lung | 6 |
| abstract_inverted_index.tool | 195 |
| abstract_inverted_index.used | 94 |
| abstract_inverted_index.were | 60, 65, 93, 120 |
| abstract_inverted_index.(PCA) | 92 |
| abstract_inverted_index.3/6/9 | 70 |
| abstract_inverted_index.K–M | 162 |
| abstract_inverted_index.NSCLC | 35, 55, 190 |
| abstract_inverted_index.aimed | 21 |
| abstract_inverted_index.curve | 116 |
| abstract_inverted_index.index | 110 |
| abstract_inverted_index.model | 25, 153, 175 |
| abstract_inverted_index.named | 79 |
| abstract_inverted_index.novel | 194 |
| abstract_inverted_index.study | 20 |
| abstract_inverted_index.three | 58 |
| abstract_inverted_index.total | 52 |
| abstract_inverted_index.tumor | 14 |
| abstract_inverted_index.under | 114 |
| abstract_inverted_index.which | 39 |
| abstract_inverted_index.(AUC). | 117 |
| abstract_inverted_index.0.63). | 139, 150 |
| abstract_inverted_index.across | 160 |
| abstract_inverted_index.cancer | 7 |
| abstract_inverted_index.limits | 16 |
| abstract_inverted_index.model. | 103 |
| abstract_inverted_index.relies | 9 |
| abstract_inverted_index.scans. | 76 |
| abstract_inverted_index.showed | 134 |
| abstract_inverted_index.(NSCLC) | 8 |
| abstract_inverted_index.0.001). | 171 |
| abstract_inverted_index.Methods | 50 |
| abstract_inverted_index.Results | 125 |
| abstract_inverted_index.centers | 59 |
| abstract_inverted_index.curves. | 124 |
| abstract_inverted_index.develop | 23 |
| abstract_inverted_index.extract | 84 |
| abstract_inverted_index.highest | 156 |
| abstract_inverted_index.network | 78 |
| abstract_inverted_index.overall | 31 |
| abstract_inverted_index.regions | 73 |
| abstract_inverted_index.through | 122 |
| abstract_inverted_index.&lt; | 170 |
| abstract_inverted_index.Survival | 118 |
| abstract_inverted_index.accuracy | 157 |
| abstract_inverted_index.achieved | 154 |
| abstract_inverted_index.analysis | 91, 133, 163 |
| abstract_inverted_index.combined | 102, 152, 174 |
| abstract_inverted_index.features | 43, 64, 98, 132, 142, 146, 179, 183 |
| abstract_inverted_index.learning | 47 |
| abstract_inverted_index.offering | 192 |
| abstract_inverted_index.patients | 36, 56 |
| abstract_inverted_index.predicts | 186 |
| abstract_inverted_index.proposed | 82 |
| abstract_inverted_index.staging, | 12 |
| abstract_inverted_index.survival | 32, 166 |
| abstract_inverted_index.(C-index) | 111 |
| abstract_inverted_index.(C-index: | 138, 147, 158 |
| abstract_inverted_index.(log-rank | 168 |
| abstract_inverted_index.0.77/0.73 | 159 |
| abstract_inverted_index.Lasso-Cox | 87 |
| abstract_inverted_index.Radiomics | 63 |
| abstract_inverted_index.accuracy. | 18 |
| abstract_inverted_index.component | 90 |
| abstract_inverted_index.confirmed | 164 |
| abstract_inverted_index.enrolled. | 62 |
| abstract_inverted_index.establish | 100 |
| abstract_inverted_index.evaluated | 106 |
| abstract_inverted_index.expansion | 129 |
| abstract_inverted_index.extracted | 66 |
| abstract_inverted_index.features. | 49, 86 |
| abstract_inverted_index.improving | 27 |
| abstract_inverted_index.integrate | 96 |
| abstract_inverted_index.non-small | 4 |
| abstract_inverted_index.patients, | 191 |
| abstract_inverted_index.principal | 89 |
| abstract_inverted_index.radiomics | 42, 131, 145, 178 |
| abstract_inverted_index.receiving | 37 |
| abstract_inverted_index.Background | 0 |
| abstract_inverted_index.Conclusion | 172 |
| abstract_inverted_index.Prognostic | 1 |
| abstract_inverted_index.assessment | 2 |
| abstract_inverted_index.datasets). | 161 |
| abstract_inverted_index.integrated | 40 |
| abstract_inverted_index.integrates | 176 |
| abstract_inverted_index.prediction | 29 |
| abstract_inverted_index.visualized | 121 |
| abstract_inverted_index.Performance | 104 |
| abstract_inverted_index.concordance | 109 |
| abstract_inverted_index.differences | 119, 167 |
| abstract_inverted_index.effectively | 185 |
| abstract_inverted_index.performance | 137 |
| abstract_inverted_index.peritumoral | 72, 130 |
| abstract_inverted_index.significant | 165 |
| abstract_inverted_index.strategies. | 199 |
| abstract_inverted_index.3D-SE-ResNet | 80 |
| abstract_inverted_index.intratumoral | 68 |
| abstract_inverted_index.outperformed | 143 |
| abstract_inverted_index.personalized | 197 |
| abstract_inverted_index.radiotherapy | 198 |
| abstract_inverted_index.heterogeneity | 15 |
| abstract_inverted_index.radiotherapy, | 38 |
| abstract_inverted_index.Kaplan–Meier | 123 |
| abstract_inverted_index.retrospectively | 61 |
| abstract_inverted_index.multidimensional | 97 |
| abstract_inverted_index.intratumoral/peritumoral | 41, 177 |
| cited_by_percentile_year | |
| corresponding_author_ids | https://openalex.org/A5035259194, https://openalex.org/A5058225779, https://openalex.org/A5003138485 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 7 |
| corresponding_institution_ids | https://openalex.org/I2802939634, https://openalex.org/I4210159257, https://openalex.org/I4210160531, https://openalex.org/I4210163399 |
| citation_normalized_percentile |