Intelligent Detection Method for Satellite TT&C Signals under Restricted Conditions Based on TATR Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.3390/rs16061008
In complex electromagnetic environments, satellite telemetry, tracking, and command (TT&C) signals often become submerged in background noise. Traditional TT&C signal detection algorithms suffer a significant performance degradation or can even be difficult to execute when phase information is absent. Currently, deep-learning-based detection algorithms often rely on expert-experience-driven post-processing steps, failing to achieve end-to-end signal detection. To address the aforementioned limitations of existing algorithms, we propose an intelligent satellite TT&C signal detection method based on triplet attention and Transformer (TATR). TATR introduces the residual triplet attention (ResTA) backbone network, which effectively combines spectral feature channels, frequency, and amplitude dimensions almost without introducing additional parameters. In signal detection, TATR employs a multi-head self-attention mechanism to effectively address the long-range dependency issue in spectral information. Moreover, the prediction-box-matching module based on the Hungarian algorithm eliminates the need for non-maximum suppression (NMS) post-processing steps, transforming the signal detection problem into a set prediction problem and enabling parallel output of the detection results. TATR combines the global attention capability of ResTA with the local self-attention capability of Transformer. Experimental results demonstrate that utilizing only the signal spectrum amplitude information, TATR achieves accurate detection of weak TT&C signals with signal-to-noise ratios (SNRs) of −15 dB and above ([email protected] > 90%), with parameter estimation errors below 3%, which outperforms typical target detection methods.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.3390/rs16061008
- https://www.mdpi.com/2072-4292/16/6/1008/pdf?version=1710325399
- OA Status
- gold
- Cited By
- 3
- References
- 50
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4392763424
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4392763424Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.3390/rs16061008Digital Object Identifier
- Title
-
Intelligent Detection Method for Satellite TT&C Signals under Restricted Conditions Based on TATRWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-03-13Full publication date if available
- Authors
-
Yu Li, Xiaoran Shi, X. Wang, Yongqiang Lu, Peipei Cheng, Feng ZhouList of authors in order
- Landing page
-
https://doi.org/10.3390/rs16061008Publisher landing page
- PDF URL
-
https://www.mdpi.com/2072-4292/16/6/1008/pdf?version=1710325399Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://www.mdpi.com/2072-4292/16/6/1008/pdf?version=1710325399Direct OA link when available
- Concepts
-
Remote sensing, Satellite, Environmental science, Computer science, Geology, Aerospace engineering, EngineeringTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
3Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1, 2024: 2Per-year citation counts (last 5 years)
- References (count)
-
50Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4392763424 |
|---|---|
| doi | https://doi.org/10.3390/rs16061008 |
| ids.doi | https://doi.org/10.3390/rs16061008 |
| ids.openalex | https://openalex.org/W4392763424 |
| fwci | 4.51574213 |
| type | article |
| title | Intelligent Detection Method for Satellite TT&C Signals under Restricted Conditions Based on TATR |
| awards[0].id | https://openalex.org/G3998988758 |
| awards[0].funder_id | https://openalex.org/F4320321543 |
| awards[0].display_name | |
| awards[0].funder_award_id | 2016M602775 |
| awards[0].funder_display_name | China Postdoctoral Science Foundation |
| biblio.issue | 6 |
| biblio.volume | 16 |
| biblio.last_page | 1008 |
| biblio.first_page | 1008 |
| topics[0].id | https://openalex.org/T12424 |
| topics[0].field.id | https://openalex.org/fields/19 |
| topics[0].field.display_name | Earth and Planetary Sciences |
| topics[0].score | 0.9539999961853027 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1908 |
| topics[0].subfield.display_name | Geophysics |
| topics[0].display_name | Earthquake Detection and Analysis |
| topics[1].id | https://openalex.org/T11038 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.933899998664856 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2202 |
| topics[1].subfield.display_name | Aerospace Engineering |
| topics[1].display_name | Advanced SAR Imaging Techniques |
| topics[2].id | https://openalex.org/T10876 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.9204000234603882 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2207 |
| topics[2].subfield.display_name | Control and Systems Engineering |
| topics[2].display_name | Fault Detection and Control Systems |
| funders[0].id | https://openalex.org/F4320321543 |
| funders[0].ror | https://ror.org/0426zh255 |
| funders[0].display_name | China Postdoctoral Science Foundation |
| is_xpac | False |
| apc_list.value | 2500 |
| apc_list.currency | CHF |
| apc_list.value_usd | 2707 |
| apc_paid.value | 2500 |
| apc_paid.currency | CHF |
| apc_paid.value_usd | 2707 |
| concepts[0].id | https://openalex.org/C62649853 |
| concepts[0].level | 1 |
| concepts[0].score | 0.6220394372940063 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q199687 |
| concepts[0].display_name | Remote sensing |
| concepts[1].id | https://openalex.org/C19269812 |
| concepts[1].level | 2 |
| concepts[1].score | 0.5208414196968079 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q26540 |
| concepts[1].display_name | Satellite |
| concepts[2].id | https://openalex.org/C39432304 |
| concepts[2].level | 0 |
| concepts[2].score | 0.4755786955356598 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q188847 |
| concepts[2].display_name | Environmental science |
| concepts[3].id | https://openalex.org/C41008148 |
| concepts[3].level | 0 |
| concepts[3].score | 0.38234344124794006 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[3].display_name | Computer science |
| concepts[4].id | https://openalex.org/C127313418 |
| concepts[4].level | 0 |
| concepts[4].score | 0.17852315306663513 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q1069 |
| concepts[4].display_name | Geology |
| concepts[5].id | https://openalex.org/C146978453 |
| concepts[5].level | 1 |
| concepts[5].score | 0.07573956251144409 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q3798668 |
| concepts[5].display_name | Aerospace engineering |
| concepts[6].id | https://openalex.org/C127413603 |
| concepts[6].level | 0 |
| concepts[6].score | 0.050355762243270874 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q11023 |
| concepts[6].display_name | Engineering |
| keywords[0].id | https://openalex.org/keywords/remote-sensing |
| keywords[0].score | 0.6220394372940063 |
| keywords[0].display_name | Remote sensing |
| keywords[1].id | https://openalex.org/keywords/satellite |
| keywords[1].score | 0.5208414196968079 |
| keywords[1].display_name | Satellite |
| keywords[2].id | https://openalex.org/keywords/environmental-science |
| keywords[2].score | 0.4755786955356598 |
| keywords[2].display_name | Environmental science |
| keywords[3].id | https://openalex.org/keywords/computer-science |
| keywords[3].score | 0.38234344124794006 |
| keywords[3].display_name | Computer science |
| keywords[4].id | https://openalex.org/keywords/geology |
| keywords[4].score | 0.17852315306663513 |
| keywords[4].display_name | Geology |
| keywords[5].id | https://openalex.org/keywords/aerospace-engineering |
| keywords[5].score | 0.07573956251144409 |
| keywords[5].display_name | Aerospace engineering |
| keywords[6].id | https://openalex.org/keywords/engineering |
| keywords[6].score | 0.050355762243270874 |
| keywords[6].display_name | Engineering |
| language | en |
| locations[0].id | doi:10.3390/rs16061008 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S43295729 |
| locations[0].source.issn | 2072-4292 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2072-4292 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Remote Sensing |
| locations[0].source.host_organization | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://www.mdpi.com/2072-4292/16/6/1008/pdf?version=1710325399 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Remote Sensing |
| locations[0].landing_page_url | https://doi.org/10.3390/rs16061008 |
| locations[1].id | pmh:oai:doaj.org/article:de3362d7c5164fe38403fd6923c50e2f |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | Remote Sensing, Vol 16, Iss 6, p 1008 (2024) |
| locations[1].landing_page_url | https://doaj.org/article/de3362d7c5164fe38403fd6923c50e2f |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5040436798 |
| authorships[0].author.orcid | https://orcid.org/0009-0001-6951-083X |
| authorships[0].author.display_name | Yu Li |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I149594827 |
| authorships[0].affiliations[0].raw_affiliation_string | Key Laboratory of Electronic Information Countermeasure and Simulation Technology, Ministry of Education, Xidian University, Xi'an 710071, China |
| authorships[0].institutions[0].id | https://openalex.org/I149594827 |
| authorships[0].institutions[0].ror | https://ror.org/05s92vm98 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I149594827 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Xidian University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Yu Li |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Key Laboratory of Electronic Information Countermeasure and Simulation Technology, Ministry of Education, Xidian University, Xi'an 710071, China |
| authorships[1].author.id | https://openalex.org/A5078540251 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-4636-2966 |
| authorships[1].author.display_name | Xiaoran Shi |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I149594827 |
| authorships[1].affiliations[0].raw_affiliation_string | Key Laboratory of Electronic Information Countermeasure and Simulation Technology, Ministry of Education, Xidian University, Xi'an 710071, China |
| authorships[1].institutions[0].id | https://openalex.org/I149594827 |
| authorships[1].institutions[0].ror | https://ror.org/05s92vm98 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I149594827 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Xidian University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Xiaoran Shi |
| authorships[1].is_corresponding | True |
| authorships[1].raw_affiliation_strings | Key Laboratory of Electronic Information Countermeasure and Simulation Technology, Ministry of Education, Xidian University, Xi'an 710071, China |
| authorships[2].author.id | https://openalex.org/A5115602720 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-2411-7399 |
| authorships[2].author.display_name | X. Wang |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I149594827 |
| authorships[2].affiliations[0].raw_affiliation_string | Key Laboratory of Electronic Information Countermeasure and Simulation Technology, Ministry of Education, Xidian University, Xi'an 710071, China |
| authorships[2].institutions[0].id | https://openalex.org/I149594827 |
| authorships[2].institutions[0].ror | https://ror.org/05s92vm98 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I149594827 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | Xidian University |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Xiaoning Wang |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Key Laboratory of Electronic Information Countermeasure and Simulation Technology, Ministry of Education, Xidian University, Xi'an 710071, China |
| authorships[3].author.id | https://openalex.org/A5100563658 |
| authorships[3].author.orcid | |
| authorships[3].author.display_name | Yongqiang Lu |
| authorships[3].countries | CN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I4210163738 |
| authorships[3].affiliations[0].raw_affiliation_string | State Key Laboratory of Astronautic Dynamics, Xi'an 710043, China |
| authorships[3].institutions[0].id | https://openalex.org/I4210163738 |
| authorships[3].institutions[0].ror | https://ror.org/001ycj259 |
| authorships[3].institutions[0].type | facility |
| authorships[3].institutions[0].lineage | https://openalex.org/I4210163738 |
| authorships[3].institutions[0].country_code | CN |
| authorships[3].institutions[0].display_name | China Astronaut Research and Training Center |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Yongqiang Lu |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | State Key Laboratory of Astronautic Dynamics, Xi'an 710043, China |
| authorships[4].author.id | https://openalex.org/A5101316877 |
| authorships[4].author.orcid | |
| authorships[4].author.display_name | Peipei Cheng |
| authorships[4].countries | CN |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I149594827 |
| authorships[4].affiliations[0].raw_affiliation_string | Key Laboratory of Electronic Information Countermeasure and Simulation Technology, Ministry of Education, Xidian University, Xi'an 710071, China |
| authorships[4].institutions[0].id | https://openalex.org/I149594827 |
| authorships[4].institutions[0].ror | https://ror.org/05s92vm98 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I149594827 |
| authorships[4].institutions[0].country_code | CN |
| authorships[4].institutions[0].display_name | Xidian University |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Peipei Cheng |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Key Laboratory of Electronic Information Countermeasure and Simulation Technology, Ministry of Education, Xidian University, Xi'an 710071, China |
| authorships[5].author.id | https://openalex.org/A5080509511 |
| authorships[5].author.orcid | https://orcid.org/0000-0002-1514-7393 |
| authorships[5].author.display_name | Feng Zhou |
| authorships[5].countries | CN |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I149594827 |
| authorships[5].affiliations[0].raw_affiliation_string | Key Laboratory of Electronic Information Countermeasure and Simulation Technology, Ministry of Education, Xidian University, Xi'an 710071, China |
| authorships[5].institutions[0].id | https://openalex.org/I149594827 |
| authorships[5].institutions[0].ror | https://ror.org/05s92vm98 |
| authorships[5].institutions[0].type | education |
| authorships[5].institutions[0].lineage | https://openalex.org/I149594827 |
| authorships[5].institutions[0].country_code | CN |
| authorships[5].institutions[0].display_name | Xidian University |
| authorships[5].author_position | last |
| authorships[5].raw_author_name | Feng Zhou |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | Key Laboratory of Electronic Information Countermeasure and Simulation Technology, Ministry of Education, Xidian University, Xi'an 710071, China |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.mdpi.com/2072-4292/16/6/1008/pdf?version=1710325399 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2024-03-14T00:00:00 |
| display_name | Intelligent Detection Method for Satellite TT&C Signals under Restricted Conditions Based on TATR |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T12424 |
| primary_topic.field.id | https://openalex.org/fields/19 |
| primary_topic.field.display_name | Earth and Planetary Sciences |
| primary_topic.score | 0.9539999961853027 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1908 |
| primary_topic.subfield.display_name | Geophysics |
| primary_topic.display_name | Earthquake Detection and Analysis |
| related_works | https://openalex.org/W2748952813, https://openalex.org/W2390279801, https://openalex.org/W2358668433, https://openalex.org/W2376932109, https://openalex.org/W2013329914, https://openalex.org/W2392383081, https://openalex.org/W1618102658, https://openalex.org/W4205376403, https://openalex.org/W2331410275, https://openalex.org/W2002340745 |
| cited_by_count | 3 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 2 |
| locations_count | 2 |
| best_oa_location.id | doi:10.3390/rs16061008 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S43295729 |
| best_oa_location.source.issn | 2072-4292 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2072-4292 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Remote Sensing |
| best_oa_location.source.host_organization | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://www.mdpi.com/2072-4292/16/6/1008/pdf?version=1710325399 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Remote Sensing |
| best_oa_location.landing_page_url | https://doi.org/10.3390/rs16061008 |
| primary_location.id | doi:10.3390/rs16061008 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S43295729 |
| primary_location.source.issn | 2072-4292 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2072-4292 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Remote Sensing |
| primary_location.source.host_organization | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://www.mdpi.com/2072-4292/16/6/1008/pdf?version=1710325399 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Remote Sensing |
| primary_location.landing_page_url | https://doi.org/10.3390/rs16061008 |
| publication_date | 2024-03-13 |
| publication_year | 2024 |
| referenced_works | https://openalex.org/W4388772718, https://openalex.org/W4390235727, https://openalex.org/W4296558678, https://openalex.org/W6850790481, https://openalex.org/W3198110159, https://openalex.org/W3026477656, https://openalex.org/W2841865260, https://openalex.org/W2979723353, https://openalex.org/W4366822167, https://openalex.org/W3119205652, https://openalex.org/W607748843, https://openalex.org/W2917701288, https://openalex.org/W2073177450, https://openalex.org/W2951642911, https://openalex.org/W2021730425, https://openalex.org/W2168332395, https://openalex.org/W2130520930, https://openalex.org/W2000058046, https://openalex.org/W3000632199, https://openalex.org/W4293255086, https://openalex.org/W2102605133, https://openalex.org/W1536680647, https://openalex.org/W639708223, https://openalex.org/W2193145675, https://openalex.org/W2963037989, https://openalex.org/W2570343428, https://openalex.org/W4386076325, https://openalex.org/W4285126180, https://openalex.org/W4391308022, https://openalex.org/W4385756480, https://openalex.org/W2954211164, https://openalex.org/W3039411410, https://openalex.org/W4387779714, https://openalex.org/W3096609285, https://openalex.org/W6801230688, https://openalex.org/W3089731223, https://openalex.org/W4385767979, https://openalex.org/W3205571853, https://openalex.org/W4381198891, https://openalex.org/W4353089782, https://openalex.org/W2194775991, https://openalex.org/W2565639579, https://openalex.org/W2963351448, https://openalex.org/W2962766617, https://openalex.org/W2031489346, https://openalex.org/W4384557889, https://openalex.org/W2037227137, https://openalex.org/W4324116447, https://openalex.org/W3106250896, https://openalex.org/W3199093552 |
| referenced_works_count | 50 |
| abstract_inverted_index.a | 23, 108, 146 |
| abstract_inverted_index.In | 0, 103 |
| abstract_inverted_index.To | 55 |
| abstract_inverted_index.an | 65 |
| abstract_inverted_index.be | 30 |
| abstract_inverted_index.dB | 198 |
| abstract_inverted_index.in | 14, 119 |
| abstract_inverted_index.is | 37 |
| abstract_inverted_index.of | 60, 154, 164, 171, 188, 196 |
| abstract_inverted_index.on | 45, 73, 127 |
| abstract_inverted_index.or | 27 |
| abstract_inverted_index.to | 32, 50, 112 |
| abstract_inverted_index.we | 63 |
| abstract_inverted_index.3%, | 209 |
| abstract_inverted_index.and | 7, 76, 95, 150, 199 |
| abstract_inverted_index.can | 28 |
| abstract_inverted_index.for | 134 |
| abstract_inverted_index.set | 147 |
| abstract_inverted_index.the | 57, 81, 115, 123, 128, 132, 141, 155, 160, 167, 179 |
| abstract_inverted_index.> | 202 |
| abstract_inverted_index.TATR | 79, 106, 158, 184 |
| abstract_inverted_index.even | 29 |
| abstract_inverted_index.into | 145 |
| abstract_inverted_index.need | 133 |
| abstract_inverted_index.only | 178 |
| abstract_inverted_index.rely | 44 |
| abstract_inverted_index.that | 176 |
| abstract_inverted_index.weak | 189 |
| abstract_inverted_index.when | 34 |
| abstract_inverted_index.with | 166, 192, 204 |
| abstract_inverted_index.(NMS) | 137 |
| abstract_inverted_index.90%), | 203 |
| abstract_inverted_index.ResTA | 165 |
| abstract_inverted_index.above | 200 |
| abstract_inverted_index.based | 72, 126 |
| abstract_inverted_index.below | 208 |
| abstract_inverted_index.issue | 118 |
| abstract_inverted_index.local | 168 |
| abstract_inverted_index.often | 11, 43 |
| abstract_inverted_index.phase | 35 |
| abstract_inverted_index.which | 88, 210 |
| abstract_inverted_index.−15 | 197 |
| abstract_inverted_index.(SNRs) | 195 |
| abstract_inverted_index.almost | 98 |
| abstract_inverted_index.become | 12 |
| abstract_inverted_index.errors | 207 |
| abstract_inverted_index.global | 161 |
| abstract_inverted_index.method | 71 |
| abstract_inverted_index.module | 125 |
| abstract_inverted_index.noise. | 16 |
| abstract_inverted_index.output | 153 |
| abstract_inverted_index.ratios | 194 |
| abstract_inverted_index.signal | 19, 53, 69, 104, 142, 180 |
| abstract_inverted_index.steps, | 48, 139 |
| abstract_inverted_index.suffer | 22 |
| abstract_inverted_index.target | 213 |
| abstract_inverted_index.(ResTA) | 85 |
| abstract_inverted_index.(TATR). | 78 |
| abstract_inverted_index.absent. | 38 |
| abstract_inverted_index.achieve | 51 |
| abstract_inverted_index.address | 56, 114 |
| abstract_inverted_index.command | 8 |
| abstract_inverted_index.complex | 1 |
| abstract_inverted_index.employs | 107 |
| abstract_inverted_index.execute | 33 |
| abstract_inverted_index.failing | 49 |
| abstract_inverted_index.feature | 92 |
| abstract_inverted_index.problem | 144, 149 |
| abstract_inverted_index.propose | 64 |
| abstract_inverted_index.results | 174 |
| abstract_inverted_index.signals | 10, 191 |
| abstract_inverted_index.triplet | 74, 83 |
| abstract_inverted_index.typical | 212 |
| abstract_inverted_index.without | 99 |
| abstract_inverted_index.([email protected] | 201 |
| abstract_inverted_index.TT&C | 18, 68, 190 |
| abstract_inverted_index.accurate | 186 |
| abstract_inverted_index.achieves | 185 |
| abstract_inverted_index.backbone | 86 |
| abstract_inverted_index.combines | 90, 159 |
| abstract_inverted_index.enabling | 151 |
| abstract_inverted_index.existing | 61 |
| abstract_inverted_index.methods. | 215 |
| abstract_inverted_index.network, | 87 |
| abstract_inverted_index.parallel | 152 |
| abstract_inverted_index.residual | 82 |
| abstract_inverted_index.results. | 157 |
| abstract_inverted_index.spectral | 91, 120 |
| abstract_inverted_index.spectrum | 181 |
| abstract_inverted_index.Hungarian | 129 |
| abstract_inverted_index.Moreover, | 122 |
| abstract_inverted_index.algorithm | 130 |
| abstract_inverted_index.amplitude | 96, 182 |
| abstract_inverted_index.attention | 75, 84, 162 |
| abstract_inverted_index.channels, | 93 |
| abstract_inverted_index.detection | 20, 41, 70, 143, 156, 187, 214 |
| abstract_inverted_index.difficult | 31 |
| abstract_inverted_index.mechanism | 111 |
| abstract_inverted_index.parameter | 205 |
| abstract_inverted_index.satellite | 4, 67 |
| abstract_inverted_index.submerged | 13 |
| abstract_inverted_index.tracking, | 6 |
| abstract_inverted_index.utilizing | 177 |
| abstract_inverted_index.(TT&C) | 9 |
| abstract_inverted_index.Currently, | 39 |
| abstract_inverted_index.additional | 101 |
| abstract_inverted_index.algorithms | 21, 42 |
| abstract_inverted_index.background | 15 |
| abstract_inverted_index.capability | 163, 170 |
| abstract_inverted_index.dependency | 117 |
| abstract_inverted_index.detection, | 105 |
| abstract_inverted_index.detection. | 54 |
| abstract_inverted_index.dimensions | 97 |
| abstract_inverted_index.eliminates | 131 |
| abstract_inverted_index.end-to-end | 52 |
| abstract_inverted_index.estimation | 206 |
| abstract_inverted_index.frequency, | 94 |
| abstract_inverted_index.introduces | 80 |
| abstract_inverted_index.long-range | 116 |
| abstract_inverted_index.multi-head | 109 |
| abstract_inverted_index.prediction | 148 |
| abstract_inverted_index.telemetry, | 5 |
| abstract_inverted_index.Traditional | 17 |
| abstract_inverted_index.Transformer | 77 |
| abstract_inverted_index.algorithms, | 62 |
| abstract_inverted_index.degradation | 26 |
| abstract_inverted_index.demonstrate | 175 |
| abstract_inverted_index.effectively | 89, 113 |
| abstract_inverted_index.information | 36 |
| abstract_inverted_index.intelligent | 66 |
| abstract_inverted_index.introducing | 100 |
| abstract_inverted_index.limitations | 59 |
| abstract_inverted_index.non-maximum | 135 |
| abstract_inverted_index.outperforms | 211 |
| abstract_inverted_index.parameters. | 102 |
| abstract_inverted_index.performance | 25 |
| abstract_inverted_index.significant | 24 |
| abstract_inverted_index.suppression | 136 |
| abstract_inverted_index.Experimental | 173 |
| abstract_inverted_index.Transformer. | 172 |
| abstract_inverted_index.information, | 183 |
| abstract_inverted_index.information. | 121 |
| abstract_inverted_index.transforming | 140 |
| abstract_inverted_index.environments, | 3 |
| abstract_inverted_index.aforementioned | 58 |
| abstract_inverted_index.self-attention | 110, 169 |
| abstract_inverted_index.electromagnetic | 2 |
| abstract_inverted_index.post-processing | 47, 138 |
| abstract_inverted_index.signal-to-noise | 193 |
| abstract_inverted_index.deep-learning-based | 40 |
| abstract_inverted_index.prediction-box-matching | 124 |
| abstract_inverted_index.expert-experience-driven | 46 |
| cited_by_percentile_year.max | 96 |
| cited_by_percentile_year.min | 91 |
| corresponding_author_ids | https://openalex.org/A5078540251 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 6 |
| corresponding_institution_ids | https://openalex.org/I149594827 |
| citation_normalized_percentile.value | 0.83707177 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |