Intelligent Detection of the PV Faults Based on Artificial Neural Network and Type 2 Fuzzy Systems Article Swipe
YOU?
·
· 2021
· Open Access
·
· DOI: https://doi.org/10.3390/en14206584
The real-time application research on the Fuzzy Logic Systems (FLSs) and Artificial Neural Networks (ANN) is vast and, in this paper, a technique for a photovoltaic failure analysis using the type 2 FLS and ANN is proposed. The method is proposed to build T2 FLS with a guaranteed value equal to or lower than T2 and ANN. Several explanations are conducted to illustrate the effectiveness of the methodologies. It is found that both the type 2 Fuzzy and ANN can be configured for productive actions in applications for a PV fault analysis, and choice is typically applied. The methods discussed in this paper lay the groundwork for developing FLSs and ANNs with durable characteristics that will be extremely useful in many functional applications. The result demonstrates that specific fault categories can be detected using the fault identification method, such as damaged PV modules and partial PV unit shades. The average detection performance is similar in both ANN and fuzzy techniques. In comparison, both systems evaluated show approximately the same performance during experiments. The architecture of the type 2 fuzzy logic system and ANN with radial basic function, including the roles of the output port and the rules for identifying the type of defect in the PV structure is slightly different.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.3390/en14206584
- https://www.mdpi.com/1996-1073/14/20/6584/pdf?version=1634565466
- OA Status
- gold
- Cited By
- 91
- References
- 32
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W3205379079
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W3205379079Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.3390/en14206584Digital Object Identifier
- Title
-
Intelligent Detection of the PV Faults Based on Artificial Neural Network and Type 2 Fuzzy SystemsWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2021Year of publication
- Publication date
-
2021-10-13Full publication date if available
- Authors
-
R. Janarthanan, Rahul Maheshwari, Prashant Kumar Shukla, Piyush Kumar Shukla, Seyedali Mirjalili, Manoj KumarList of authors in order
- Landing page
-
https://doi.org/10.3390/en14206584Publisher landing page
- PDF URL
-
https://www.mdpi.com/1996-1073/14/20/6584/pdf?version=1634565466Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://www.mdpi.com/1996-1073/14/20/6584/pdf?version=1634565466Direct OA link when available
- Concepts
-
Artificial neural network, Fuzzy logic, Photovoltaic system, Fault detection and isolation, Fault (geology), Computer science, Neuro-fuzzy, Artificial intelligence, Identification (biology), Engineering, Control engineering, Fuzzy control system, Machine learning, Electrical engineering, Geology, Biology, Actuator, Botany, SeismologyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
91Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 22, 2024: 19, 2023: 14, 2022: 36Per-year citation counts (last 5 years)
- References (count)
-
32Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W3205379079 |
|---|---|
| doi | https://doi.org/10.3390/en14206584 |
| ids.doi | https://doi.org/10.3390/en14206584 |
| ids.mag | 3205379079 |
| ids.openalex | https://openalex.org/W3205379079 |
| fwci | 3.64818077 |
| type | article |
| title | Intelligent Detection of the PV Faults Based on Artificial Neural Network and Type 2 Fuzzy Systems |
| biblio.issue | 20 |
| biblio.volume | 14 |
| biblio.last_page | 6584 |
| biblio.first_page | 6584 |
| topics[0].id | https://openalex.org/T10468 |
| topics[0].field.id | https://openalex.org/fields/21 |
| topics[0].field.display_name | Energy |
| topics[0].score | 0.9993000030517578 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2105 |
| topics[0].subfield.display_name | Renewable Energy, Sustainability and the Environment |
| topics[0].display_name | Photovoltaic System Optimization Techniques |
| topics[1].id | https://openalex.org/T12111 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.9725000262260437 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2209 |
| topics[1].subfield.display_name | Industrial and Manufacturing Engineering |
| topics[1].display_name | Industrial Vision Systems and Defect Detection |
| topics[2].id | https://openalex.org/T12737 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.9681000113487244 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2208 |
| topics[2].subfield.display_name | Electrical and Electronic Engineering |
| topics[2].display_name | Electrical Fault Detection and Protection |
| is_xpac | False |
| apc_list.value | 2200 |
| apc_list.currency | CHF |
| apc_list.value_usd | 2382 |
| apc_paid.value | 2200 |
| apc_paid.currency | CHF |
| apc_paid.value_usd | 2382 |
| concepts[0].id | https://openalex.org/C50644808 |
| concepts[0].level | 2 |
| concepts[0].score | 0.6893662810325623 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q192776 |
| concepts[0].display_name | Artificial neural network |
| concepts[1].id | https://openalex.org/C58166 |
| concepts[1].level | 2 |
| concepts[1].score | 0.689013659954071 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q224821 |
| concepts[1].display_name | Fuzzy logic |
| concepts[2].id | https://openalex.org/C41291067 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6033150553703308 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q1897785 |
| concepts[2].display_name | Photovoltaic system |
| concepts[3].id | https://openalex.org/C152745839 |
| concepts[3].level | 3 |
| concepts[3].score | 0.5879116654396057 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q5438153 |
| concepts[3].display_name | Fault detection and isolation |
| concepts[4].id | https://openalex.org/C175551986 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5713978409767151 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q47089 |
| concepts[4].display_name | Fault (geology) |
| concepts[5].id | https://openalex.org/C41008148 |
| concepts[5].level | 0 |
| concepts[5].score | 0.5141570568084717 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[5].display_name | Computer science |
| concepts[6].id | https://openalex.org/C29470771 |
| concepts[6].level | 4 |
| concepts[6].score | 0.5041674375534058 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q4165150 |
| concepts[6].display_name | Neuro-fuzzy |
| concepts[7].id | https://openalex.org/C154945302 |
| concepts[7].level | 1 |
| concepts[7].score | 0.495355486869812 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[7].display_name | Artificial intelligence |
| concepts[8].id | https://openalex.org/C116834253 |
| concepts[8].level | 2 |
| concepts[8].score | 0.46783462166786194 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q2039217 |
| concepts[8].display_name | Identification (biology) |
| concepts[9].id | https://openalex.org/C127413603 |
| concepts[9].level | 0 |
| concepts[9].score | 0.3959425091743469 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q11023 |
| concepts[9].display_name | Engineering |
| concepts[10].id | https://openalex.org/C133731056 |
| concepts[10].level | 1 |
| concepts[10].score | 0.3714343011379242 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q4917288 |
| concepts[10].display_name | Control engineering |
| concepts[11].id | https://openalex.org/C195975749 |
| concepts[11].level | 3 |
| concepts[11].score | 0.3439922332763672 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q1475705 |
| concepts[11].display_name | Fuzzy control system |
| concepts[12].id | https://openalex.org/C119857082 |
| concepts[12].level | 1 |
| concepts[12].score | 0.3387640118598938 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[12].display_name | Machine learning |
| concepts[13].id | https://openalex.org/C119599485 |
| concepts[13].level | 1 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q43035 |
| concepts[13].display_name | Electrical engineering |
| concepts[14].id | https://openalex.org/C127313418 |
| concepts[14].level | 0 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q1069 |
| concepts[14].display_name | Geology |
| concepts[15].id | https://openalex.org/C86803240 |
| concepts[15].level | 0 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q420 |
| concepts[15].display_name | Biology |
| concepts[16].id | https://openalex.org/C172707124 |
| concepts[16].level | 2 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q423488 |
| concepts[16].display_name | Actuator |
| concepts[17].id | https://openalex.org/C59822182 |
| concepts[17].level | 1 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q441 |
| concepts[17].display_name | Botany |
| concepts[18].id | https://openalex.org/C165205528 |
| concepts[18].level | 1 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q83371 |
| concepts[18].display_name | Seismology |
| keywords[0].id | https://openalex.org/keywords/artificial-neural-network |
| keywords[0].score | 0.6893662810325623 |
| keywords[0].display_name | Artificial neural network |
| keywords[1].id | https://openalex.org/keywords/fuzzy-logic |
| keywords[1].score | 0.689013659954071 |
| keywords[1].display_name | Fuzzy logic |
| keywords[2].id | https://openalex.org/keywords/photovoltaic-system |
| keywords[2].score | 0.6033150553703308 |
| keywords[2].display_name | Photovoltaic system |
| keywords[3].id | https://openalex.org/keywords/fault-detection-and-isolation |
| keywords[3].score | 0.5879116654396057 |
| keywords[3].display_name | Fault detection and isolation |
| keywords[4].id | https://openalex.org/keywords/fault |
| keywords[4].score | 0.5713978409767151 |
| keywords[4].display_name | Fault (geology) |
| keywords[5].id | https://openalex.org/keywords/computer-science |
| keywords[5].score | 0.5141570568084717 |
| keywords[5].display_name | Computer science |
| keywords[6].id | https://openalex.org/keywords/neuro-fuzzy |
| keywords[6].score | 0.5041674375534058 |
| keywords[6].display_name | Neuro-fuzzy |
| keywords[7].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[7].score | 0.495355486869812 |
| keywords[7].display_name | Artificial intelligence |
| keywords[8].id | https://openalex.org/keywords/identification |
| keywords[8].score | 0.46783462166786194 |
| keywords[8].display_name | Identification (biology) |
| keywords[9].id | https://openalex.org/keywords/engineering |
| keywords[9].score | 0.3959425091743469 |
| keywords[9].display_name | Engineering |
| keywords[10].id | https://openalex.org/keywords/control-engineering |
| keywords[10].score | 0.3714343011379242 |
| keywords[10].display_name | Control engineering |
| keywords[11].id | https://openalex.org/keywords/fuzzy-control-system |
| keywords[11].score | 0.3439922332763672 |
| keywords[11].display_name | Fuzzy control system |
| keywords[12].id | https://openalex.org/keywords/machine-learning |
| keywords[12].score | 0.3387640118598938 |
| keywords[12].display_name | Machine learning |
| language | en |
| locations[0].id | doi:10.3390/en14206584 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S198098182 |
| locations[0].source.issn | 1996-1073 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 1996-1073 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Energies |
| locations[0].source.host_organization | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://www.mdpi.com/1996-1073/14/20/6584/pdf?version=1634565466 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Energies |
| locations[0].landing_page_url | https://doi.org/10.3390/en14206584 |
| locations[1].id | pmh:oai:doaj.org/article:4285d2ee83ad493699016b50be83fd46 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].license | cc-by-sa |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | https://openalex.org/licenses/cc-by-sa |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | Energies, Vol 14, Iss 20, p 6584 (2021) |
| locations[1].landing_page_url | https://doaj.org/article/4285d2ee83ad493699016b50be83fd46 |
| locations[2].id | pmh:oai:mdpi.com:/1996-1073/14/20/6584/ |
| locations[2].is_oa | True |
| locations[2].source.id | https://openalex.org/S4306400947 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | True |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | MDPI (MDPI AG) |
| locations[2].source.host_organization | https://openalex.org/I4210097602 |
| locations[2].source.host_organization_name | Multidisciplinary Digital Publishing Institute (Switzerland) |
| locations[2].source.host_organization_lineage | https://openalex.org/I4210097602 |
| locations[2].license | cc-by |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | Text |
| locations[2].license_id | https://openalex.org/licenses/cc-by |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | Energies; Volume 14; Issue 20; Pages: 6584 |
| locations[2].landing_page_url | https://dx.doi.org/10.3390/en14206584 |
| locations[3].id | pmh:oai:research-repository.griffith.edu.au:10072/409520 |
| locations[3].is_oa | True |
| locations[3].source.id | https://openalex.org/S4306402548 |
| locations[3].source.issn | |
| locations[3].source.type | repository |
| locations[3].source.is_oa | False |
| locations[3].source.issn_l | |
| locations[3].source.is_core | False |
| locations[3].source.is_in_doaj | False |
| locations[3].source.display_name | Griffith Research Online (Griffith University, Queensland, Australia) |
| locations[3].source.host_organization | https://openalex.org/I11701301 |
| locations[3].source.host_organization_name | Griffith University |
| locations[3].source.host_organization_lineage | https://openalex.org/I11701301 |
| locations[3].license | cc-by |
| locations[3].pdf_url | |
| locations[3].version | submittedVersion |
| locations[3].raw_type | Journal article |
| locations[3].license_id | https://openalex.org/licenses/cc-by |
| locations[3].is_accepted | False |
| locations[3].is_published | False |
| locations[3].raw_source_name | |
| locations[3].landing_page_url | http://hdl.handle.net/10072/409520 |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5046598051 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-1587-634X |
| authorships[0].author.display_name | R. Janarthanan |
| authorships[0].affiliations[0].raw_affiliation_string | Center for Artificial Intelligence, Department of CSE, Chennai Institute of Technology, Chennai 600069, Tamil Nadu, India |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Ramadoss Janarthanan |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Center for Artificial Intelligence, Department of CSE, Chennai Institute of Technology, Chennai 600069, Tamil Nadu, India |
| authorships[1].author.id | https://openalex.org/A5103852345 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Rahul Maheshwari |
| authorships[1].countries | IN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I43663321 |
| authorships[1].affiliations[0].raw_affiliation_string | Department of ECE, Hindustan Institute of Technology, Coimbatore 641028, Tamil Nadu, India |
| authorships[1].institutions[0].id | https://openalex.org/I43663321 |
| authorships[1].institutions[0].ror | https://ror.org/037tgdn13 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I43663321 |
| authorships[1].institutions[0].country_code | IN |
| authorships[1].institutions[0].display_name | Hindustan Institute of Technology and Science |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | R. Uma Maheshwari |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Department of ECE, Hindustan Institute of Technology, Coimbatore 641028, Tamil Nadu, India |
| authorships[2].author.id | https://openalex.org/A5053638739 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-3092-2415 |
| authorships[2].author.display_name | Prashant Kumar Shukla |
| authorships[2].countries | IN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I875944469 |
| authorships[2].affiliations[0].raw_affiliation_string | Department of Computer Science and Engineering, K L University, Vijayawada 520002, Andhra Pradesh, India |
| authorships[2].institutions[0].id | https://openalex.org/I875944469 |
| authorships[2].institutions[0].ror | https://ror.org/02k949197 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I875944469 |
| authorships[2].institutions[0].country_code | IN |
| authorships[2].institutions[0].display_name | Koneru Lakshmaiah Education Foundation |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Prashant Kumar Shukla |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Department of Computer Science and Engineering, K L University, Vijayawada 520002, Andhra Pradesh, India |
| authorships[3].author.id | https://openalex.org/A5057868351 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-3715-3882 |
| authorships[3].author.display_name | Piyush Kumar Shukla |
| authorships[3].countries | IN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I196622127 |
| authorships[3].affiliations[0].raw_affiliation_string | Computer Science & Engineering Department, University Institute of Technology, Rajiv Gandhi Proudyogiki Vishwavidyalaya, Technological University of Madhya Pradesh, Bhopal 462023, Madhya Pradesh, India |
| authorships[3].institutions[0].id | https://openalex.org/I196622127 |
| authorships[3].institutions[0].ror | https://ror.org/03xmje391 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I196622127 |
| authorships[3].institutions[0].country_code | IN |
| authorships[3].institutions[0].display_name | Rajiv Gandhi Technical University |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Piyush Kumar Shukla |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Computer Science & Engineering Department, University Institute of Technology, Rajiv Gandhi Proudyogiki Vishwavidyalaya, Technological University of Madhya Pradesh, Bhopal 462023, Madhya Pradesh, India |
| authorships[4].author.id | https://openalex.org/A5091500375 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-1443-9458 |
| authorships[4].author.display_name | Seyedali Mirjalili |
| authorships[4].countries | AU, KR |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I4210142395 |
| authorships[4].affiliations[0].raw_affiliation_string | Center for Artificial Intelligence and Optimization, Torrens University Australia, Brisbane, QLD 4006, Australia |
| authorships[4].affiliations[1].institution_ids | https://openalex.org/I193775966 |
| authorships[4].affiliations[1].raw_affiliation_string | Yonsei Frontier Laboratory, Yonsei University, Seoul 03722, Korea |
| authorships[4].institutions[0].id | https://openalex.org/I4210142395 |
| authorships[4].institutions[0].ror | https://ror.org/0351xae06 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I4210142395 |
| authorships[4].institutions[0].country_code | AU |
| authorships[4].institutions[0].display_name | Torrens University Australia |
| authorships[4].institutions[1].id | https://openalex.org/I193775966 |
| authorships[4].institutions[1].ror | https://ror.org/01wjejq96 |
| authorships[4].institutions[1].type | education |
| authorships[4].institutions[1].lineage | https://openalex.org/I193775966 |
| authorships[4].institutions[1].country_code | KR |
| authorships[4].institutions[1].display_name | Yonsei University |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Seyedali Mirjalili |
| authorships[4].is_corresponding | True |
| authorships[4].raw_affiliation_strings | Center for Artificial Intelligence and Optimization, Torrens University Australia, Brisbane, QLD 4006, Australia, Yonsei Frontier Laboratory, Yonsei University, Seoul 03722, Korea |
| authorships[5].author.id | https://openalex.org/A5100763147 |
| authorships[5].author.orcid | https://orcid.org/0000-0001-5113-0639 |
| authorships[5].author.display_name | Manoj Kumar |
| authorships[5].countries | IN |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I5847235 |
| authorships[5].affiliations[0].raw_affiliation_string | School of Computer Science, University of Petroleum and Energy Studies, Dehradun 248007, Uttarakhand, India |
| authorships[5].institutions[0].id | https://openalex.org/I5847235 |
| authorships[5].institutions[0].ror | https://ror.org/04q2jes40 |
| authorships[5].institutions[0].type | education |
| authorships[5].institutions[0].lineage | https://openalex.org/I5847235 |
| authorships[5].institutions[0].country_code | IN |
| authorships[5].institutions[0].display_name | University of Petroleum and Energy Studies |
| authorships[5].author_position | last |
| authorships[5].raw_author_name | Manoj Kumar |
| authorships[5].is_corresponding | True |
| authorships[5].raw_affiliation_strings | School of Computer Science, University of Petroleum and Energy Studies, Dehradun 248007, Uttarakhand, India |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.mdpi.com/1996-1073/14/20/6584/pdf?version=1634565466 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Intelligent Detection of the PV Faults Based on Artificial Neural Network and Type 2 Fuzzy Systems |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10468 |
| primary_topic.field.id | https://openalex.org/fields/21 |
| primary_topic.field.display_name | Energy |
| primary_topic.score | 0.9993000030517578 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2105 |
| primary_topic.subfield.display_name | Renewable Energy, Sustainability and the Environment |
| primary_topic.display_name | Photovoltaic System Optimization Techniques |
| related_works | https://openalex.org/W2386968573, https://openalex.org/W2395064349, https://openalex.org/W2034374297, https://openalex.org/W2766130412, https://openalex.org/W2382628689, https://openalex.org/W2526730640, https://openalex.org/W3207109968, https://openalex.org/W2336148757, https://openalex.org/W829773823, https://openalex.org/W2937114745 |
| cited_by_count | 91 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 22 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 19 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 14 |
| counts_by_year[3].year | 2022 |
| counts_by_year[3].cited_by_count | 36 |
| locations_count | 4 |
| best_oa_location.id | doi:10.3390/en14206584 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S198098182 |
| best_oa_location.source.issn | 1996-1073 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 1996-1073 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Energies |
| best_oa_location.source.host_organization | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://www.mdpi.com/1996-1073/14/20/6584/pdf?version=1634565466 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Energies |
| best_oa_location.landing_page_url | https://doi.org/10.3390/en14206584 |
| primary_location.id | doi:10.3390/en14206584 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S198098182 |
| primary_location.source.issn | 1996-1073 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 1996-1073 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Energies |
| primary_location.source.host_organization | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://www.mdpi.com/1996-1073/14/20/6584/pdf?version=1634565466 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Energies |
| primary_location.landing_page_url | https://doi.org/10.3390/en14206584 |
| publication_date | 2021-10-13 |
| publication_year | 2021 |
| referenced_works | https://openalex.org/W2911304055, https://openalex.org/W2980326480, https://openalex.org/W2902406840, https://openalex.org/W2886946090, https://openalex.org/W2051124239, https://openalex.org/W2402645138, https://openalex.org/W2897996667, https://openalex.org/W2614092582, https://openalex.org/W2280977705, https://openalex.org/W2965473346, https://openalex.org/W2737415522, https://openalex.org/W6745105016, https://openalex.org/W2969489994, https://openalex.org/W3003631106, https://openalex.org/W3016260214, https://openalex.org/W2077927621, https://openalex.org/W3016769345, https://openalex.org/W2562897265, https://openalex.org/W2964981415, https://openalex.org/W2966222252, https://openalex.org/W2623213677, https://openalex.org/W2884792776, https://openalex.org/W3005566032, https://openalex.org/W2460418407, https://openalex.org/W3019257153, https://openalex.org/W2471159162, https://openalex.org/W3008103524, https://openalex.org/W2786001248, https://openalex.org/W2896830844, https://openalex.org/W2290883490, https://openalex.org/W2612473079, https://openalex.org/W2766107312 |
| referenced_works_count | 32 |
| abstract_inverted_index.2 | 31, 75, 177 |
| abstract_inverted_index.a | 21, 24, 46, 88 |
| abstract_inverted_index.In | 160 |
| abstract_inverted_index.It | 68 |
| abstract_inverted_index.PV | 89, 141, 145, 205 |
| abstract_inverted_index.T2 | 43, 54 |
| abstract_inverted_index.as | 139 |
| abstract_inverted_index.be | 80, 116, 131 |
| abstract_inverted_index.in | 18, 85, 100, 119, 154, 203 |
| abstract_inverted_index.is | 15, 35, 39, 69, 94, 152, 207 |
| abstract_inverted_index.of | 65, 174, 190, 201 |
| abstract_inverted_index.on | 4 |
| abstract_inverted_index.or | 51 |
| abstract_inverted_index.to | 41, 50, 61 |
| abstract_inverted_index.ANN | 34, 78, 156, 182 |
| abstract_inverted_index.FLS | 32, 44 |
| abstract_inverted_index.The | 0, 37, 97, 123, 148, 172 |
| abstract_inverted_index.and | 10, 33, 55, 77, 92, 109, 143, 157, 181, 194 |
| abstract_inverted_index.are | 59 |
| abstract_inverted_index.can | 79, 130 |
| abstract_inverted_index.for | 23, 82, 87, 106, 197 |
| abstract_inverted_index.lay | 103 |
| abstract_inverted_index.the | 5, 29, 63, 66, 73, 104, 134, 167, 175, 188, 191, 195, 199, 204 |
| abstract_inverted_index.ANN. | 56 |
| abstract_inverted_index.ANNs | 110 |
| abstract_inverted_index.FLSs | 108 |
| abstract_inverted_index.and, | 17 |
| abstract_inverted_index.both | 72, 155, 162 |
| abstract_inverted_index.many | 120 |
| abstract_inverted_index.port | 193 |
| abstract_inverted_index.same | 168 |
| abstract_inverted_index.show | 165 |
| abstract_inverted_index.such | 138 |
| abstract_inverted_index.than | 53 |
| abstract_inverted_index.that | 71, 114, 126 |
| abstract_inverted_index.this | 19, 101 |
| abstract_inverted_index.type | 30, 74, 176, 200 |
| abstract_inverted_index.unit | 146 |
| abstract_inverted_index.vast | 16 |
| abstract_inverted_index.will | 115 |
| abstract_inverted_index.with | 45, 111, 183 |
| abstract_inverted_index.(ANN) | 14 |
| abstract_inverted_index.Fuzzy | 6, 76 |
| abstract_inverted_index.Logic | 7 |
| abstract_inverted_index.basic | 185 |
| abstract_inverted_index.build | 42 |
| abstract_inverted_index.equal | 49 |
| abstract_inverted_index.fault | 90, 128, 135 |
| abstract_inverted_index.found | 70 |
| abstract_inverted_index.fuzzy | 158, 178 |
| abstract_inverted_index.logic | 179 |
| abstract_inverted_index.lower | 52 |
| abstract_inverted_index.paper | 102 |
| abstract_inverted_index.roles | 189 |
| abstract_inverted_index.rules | 196 |
| abstract_inverted_index.using | 28, 133 |
| abstract_inverted_index.value | 48 |
| abstract_inverted_index.(FLSs) | 9 |
| abstract_inverted_index.Neural | 12 |
| abstract_inverted_index.choice | 93 |
| abstract_inverted_index.defect | 202 |
| abstract_inverted_index.during | 170 |
| abstract_inverted_index.method | 38 |
| abstract_inverted_index.output | 192 |
| abstract_inverted_index.paper, | 20 |
| abstract_inverted_index.radial | 184 |
| abstract_inverted_index.result | 124 |
| abstract_inverted_index.system | 180 |
| abstract_inverted_index.useful | 118 |
| abstract_inverted_index.Several | 57 |
| abstract_inverted_index.Systems | 8 |
| abstract_inverted_index.actions | 84 |
| abstract_inverted_index.average | 149 |
| abstract_inverted_index.damaged | 140 |
| abstract_inverted_index.durable | 112 |
| abstract_inverted_index.failure | 26 |
| abstract_inverted_index.method, | 137 |
| abstract_inverted_index.methods | 98 |
| abstract_inverted_index.modules | 142 |
| abstract_inverted_index.partial | 144 |
| abstract_inverted_index.shades. | 147 |
| abstract_inverted_index.similar | 153 |
| abstract_inverted_index.systems | 163 |
| abstract_inverted_index.Networks | 13 |
| abstract_inverted_index.analysis | 27 |
| abstract_inverted_index.applied. | 96 |
| abstract_inverted_index.detected | 132 |
| abstract_inverted_index.proposed | 40 |
| abstract_inverted_index.research | 3 |
| abstract_inverted_index.slightly | 208 |
| abstract_inverted_index.specific | 127 |
| abstract_inverted_index.analysis, | 91 |
| abstract_inverted_index.conducted | 60 |
| abstract_inverted_index.detection | 150 |
| abstract_inverted_index.discussed | 99 |
| abstract_inverted_index.evaluated | 164 |
| abstract_inverted_index.extremely | 117 |
| abstract_inverted_index.function, | 186 |
| abstract_inverted_index.including | 187 |
| abstract_inverted_index.proposed. | 36 |
| abstract_inverted_index.real-time | 1 |
| abstract_inverted_index.structure | 206 |
| abstract_inverted_index.technique | 22 |
| abstract_inverted_index.typically | 95 |
| abstract_inverted_index.Artificial | 11 |
| abstract_inverted_index.categories | 129 |
| abstract_inverted_index.configured | 81 |
| abstract_inverted_index.developing | 107 |
| abstract_inverted_index.different. | 209 |
| abstract_inverted_index.functional | 121 |
| abstract_inverted_index.groundwork | 105 |
| abstract_inverted_index.guaranteed | 47 |
| abstract_inverted_index.illustrate | 62 |
| abstract_inverted_index.productive | 83 |
| abstract_inverted_index.application | 2 |
| abstract_inverted_index.comparison, | 161 |
| abstract_inverted_index.identifying | 198 |
| abstract_inverted_index.performance | 151, 169 |
| abstract_inverted_index.techniques. | 159 |
| abstract_inverted_index.applications | 86 |
| abstract_inverted_index.architecture | 173 |
| abstract_inverted_index.demonstrates | 125 |
| abstract_inverted_index.experiments. | 171 |
| abstract_inverted_index.explanations | 58 |
| abstract_inverted_index.photovoltaic | 25 |
| abstract_inverted_index.applications. | 122 |
| abstract_inverted_index.approximately | 166 |
| abstract_inverted_index.effectiveness | 64 |
| abstract_inverted_index.identification | 136 |
| abstract_inverted_index.methodologies. | 67 |
| abstract_inverted_index.characteristics | 113 |
| cited_by_percentile_year.max | 100 |
| cited_by_percentile_year.min | 99 |
| corresponding_author_ids | https://openalex.org/A5091500375, https://openalex.org/A5100763147 |
| countries_distinct_count | 3 |
| institutions_distinct_count | 6 |
| corresponding_institution_ids | https://openalex.org/I193775966, https://openalex.org/I4210142395, https://openalex.org/I5847235 |
| citation_normalized_percentile.value | 0.93581433 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |