Intelligent fruit quality classification system using transfer learning Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.32629/jai.v7i4.1424
Amidst the burgeoning demands of fruit agriculturists and grading companies for enhanced fruit quality classification, this research presents a cutting-edge approach to binary fruit quality assessment. We built a portable device for exact fruit quality inspection using transfer learning, a deep learning approach, resulting in a decrease in both human and machine labor. The performance of the system is validated and evaluated under real-time situations, with an emphasis on end-user applicability. This paper rigorously validates and assesses the system’s performance in real-world scenarios, with a strong focus on its practicality for end-users. The model is trained on an online picture dataset that is divided into two categories: ‘good’ and ‘poor’ fruits. On dataset 1, our numerical findings show outstanding classification accuracies of 99.49% and 99.75% for the first and second models, respectively. Meanwhile, on dataset 2, the first and second models attain accuracies of 85.43% and 96.75%, respectively, highlighting the efficacy of our technique.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.32629/jai.v7i4.1424
- OA Status
- diamond
- Cited By
- 2
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4392733688
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4392733688Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.32629/jai.v7i4.1424Digital Object Identifier
- Title
-
Intelligent fruit quality classification system using transfer learningWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-02-07Full publication date if available
- Authors
-
Vikas Khullar, Mohit Angurala, Abhineet Anand, Jagdish Chandra Patni, Harjit SinghList of authors in order
- Landing page
-
https://doi.org/10.32629/jai.v7i4.1424Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
diamondOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.32629/jai.v7i4.1424Direct OA link when available
- Concepts
-
Transfer of learning, Quality (philosophy), Computer science, Artificial intelligence, Machine learning, Physics, Quantum mechanicsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
2Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1, 2024: 1Per-year citation counts (last 5 years)
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4392733688 |
|---|---|
| doi | https://doi.org/10.32629/jai.v7i4.1424 |
| ids.doi | https://doi.org/10.32629/jai.v7i4.1424 |
| ids.openalex | https://openalex.org/W4392733688 |
| fwci | 0.89121286 |
| type | article |
| title | Intelligent fruit quality classification system using transfer learning |
| biblio.issue | 4 |
| biblio.volume | 7 |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10640 |
| topics[0].field.id | https://openalex.org/fields/16 |
| topics[0].field.display_name | Chemistry |
| topics[0].score | 0.9041000008583069 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1602 |
| topics[0].subfield.display_name | Analytical Chemistry |
| topics[0].display_name | Spectroscopy and Chemometric Analyses |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C150899416 |
| concepts[0].level | 2 |
| concepts[0].score | 0.6195486187934875 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q1820378 |
| concepts[0].display_name | Transfer of learning |
| concepts[1].id | https://openalex.org/C2779530757 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6102263927459717 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q1207505 |
| concepts[1].display_name | Quality (philosophy) |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.5345335006713867 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| concepts[3].id | https://openalex.org/C154945302 |
| concepts[3].level | 1 |
| concepts[3].score | 0.4603758454322815 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[3].display_name | Artificial intelligence |
| concepts[4].id | https://openalex.org/C119857082 |
| concepts[4].level | 1 |
| concepts[4].score | 0.361568808555603 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[4].display_name | Machine learning |
| concepts[5].id | https://openalex.org/C121332964 |
| concepts[5].level | 0 |
| concepts[5].score | 0.06580498814582825 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[5].display_name | Physics |
| concepts[6].id | https://openalex.org/C62520636 |
| concepts[6].level | 1 |
| concepts[6].score | 0.0 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q944 |
| concepts[6].display_name | Quantum mechanics |
| keywords[0].id | https://openalex.org/keywords/transfer-of-learning |
| keywords[0].score | 0.6195486187934875 |
| keywords[0].display_name | Transfer of learning |
| keywords[1].id | https://openalex.org/keywords/quality |
| keywords[1].score | 0.6102263927459717 |
| keywords[1].display_name | Quality (philosophy) |
| keywords[2].id | https://openalex.org/keywords/computer-science |
| keywords[2].score | 0.5345335006713867 |
| keywords[2].display_name | Computer science |
| keywords[3].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[3].score | 0.4603758454322815 |
| keywords[3].display_name | Artificial intelligence |
| keywords[4].id | https://openalex.org/keywords/machine-learning |
| keywords[4].score | 0.361568808555603 |
| keywords[4].display_name | Machine learning |
| keywords[5].id | https://openalex.org/keywords/physics |
| keywords[5].score | 0.06580498814582825 |
| keywords[5].display_name | Physics |
| language | en |
| locations[0].id | doi:10.32629/jai.v7i4.1424 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210206246 |
| locations[0].source.issn | 2630-5046 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2630-5046 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Journal of Autonomous Intelligence |
| locations[0].source.host_organization | |
| locations[0].source.host_organization_name | |
| locations[0].license | cc-by-nc |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by-nc |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Journal of Autonomous Intelligence |
| locations[0].landing_page_url | https://doi.org/10.32629/jai.v7i4.1424 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5043722627 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-0404-3652 |
| authorships[0].author.display_name | Vikas Khullar |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Vikas Khullar |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5091116129 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-9506-5864 |
| authorships[1].author.display_name | Mohit Angurala |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Mohit Angurala |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5074885512 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-3505-8563 |
| authorships[2].author.display_name | Abhineet Anand |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Abhineet Anand |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5002651904 |
| authorships[3].author.orcid | https://orcid.org/0000-0001-5127-7163 |
| authorships[3].author.display_name | Jagdish Chandra Patni |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Jagdish Chandra Patni |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5075750334 |
| authorships[4].author.orcid | https://orcid.org/0000-0001-6053-4205 |
| authorships[4].author.display_name | Harjit Singh |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Harjit Pal Singh |
| authorships[4].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.32629/jai.v7i4.1424 |
| open_access.oa_status | diamond |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Intelligent fruit quality classification system using transfer learning |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10640 |
| primary_topic.field.id | https://openalex.org/fields/16 |
| primary_topic.field.display_name | Chemistry |
| primary_topic.score | 0.9041000008583069 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1602 |
| primary_topic.subfield.display_name | Analytical Chemistry |
| primary_topic.display_name | Spectroscopy and Chemometric Analyses |
| related_works | https://openalex.org/W2961085424, https://openalex.org/W4306674287, https://openalex.org/W3046775127, https://openalex.org/W3107602296, https://openalex.org/W3170094116, https://openalex.org/W4386462264, https://openalex.org/W4364306694, https://openalex.org/W4312192474, https://openalex.org/W4283697347, https://openalex.org/W4210805261 |
| cited_by_count | 2 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 1 |
| locations_count | 1 |
| best_oa_location.id | doi:10.32629/jai.v7i4.1424 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210206246 |
| best_oa_location.source.issn | 2630-5046 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2630-5046 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Journal of Autonomous Intelligence |
| best_oa_location.source.host_organization | |
| best_oa_location.source.host_organization_name | |
| best_oa_location.license | cc-by-nc |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by-nc |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Journal of Autonomous Intelligence |
| best_oa_location.landing_page_url | https://doi.org/10.32629/jai.v7i4.1424 |
| primary_location.id | doi:10.32629/jai.v7i4.1424 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210206246 |
| primary_location.source.issn | 2630-5046 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2630-5046 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Journal of Autonomous Intelligence |
| primary_location.source.host_organization | |
| primary_location.source.host_organization_name | |
| primary_location.license | cc-by-nc |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by-nc |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Journal of Autonomous Intelligence |
| primary_location.landing_page_url | https://doi.org/10.32629/jai.v7i4.1424 |
| publication_date | 2024-02-07 |
| publication_year | 2024 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 18, 28, 39, 45, 84 |
| abstract_inverted_index.1, | 113 |
| abstract_inverted_index.2, | 135 |
| abstract_inverted_index.On | 111 |
| abstract_inverted_index.We | 26 |
| abstract_inverted_index.an | 66, 97 |
| abstract_inverted_index.in | 44, 47, 80 |
| abstract_inverted_index.is | 58, 94, 102 |
| abstract_inverted_index.of | 4, 55, 121, 143, 151 |
| abstract_inverted_index.on | 68, 87, 96, 133 |
| abstract_inverted_index.to | 21 |
| abstract_inverted_index.The | 53, 92 |
| abstract_inverted_index.and | 7, 50, 60, 75, 108, 123, 128, 138, 145 |
| abstract_inverted_index.for | 10, 31, 90, 125 |
| abstract_inverted_index.its | 88 |
| abstract_inverted_index.our | 114, 152 |
| abstract_inverted_index.the | 1, 56, 77, 126, 136, 149 |
| abstract_inverted_index.two | 105 |
| abstract_inverted_index.This | 71 |
| abstract_inverted_index.both | 48 |
| abstract_inverted_index.deep | 40 |
| abstract_inverted_index.into | 104 |
| abstract_inverted_index.show | 117 |
| abstract_inverted_index.that | 101 |
| abstract_inverted_index.this | 15 |
| abstract_inverted_index.with | 65, 83 |
| abstract_inverted_index.built | 27 |
| abstract_inverted_index.exact | 32 |
| abstract_inverted_index.first | 127, 137 |
| abstract_inverted_index.focus | 86 |
| abstract_inverted_index.fruit | 5, 12, 23, 33 |
| abstract_inverted_index.human | 49 |
| abstract_inverted_index.model | 93 |
| abstract_inverted_index.paper | 72 |
| abstract_inverted_index.under | 62 |
| abstract_inverted_index.using | 36 |
| abstract_inverted_index.85.43% | 144 |
| abstract_inverted_index.99.49% | 122 |
| abstract_inverted_index.99.75% | 124 |
| abstract_inverted_index.attain | 141 |
| abstract_inverted_index.binary | 22 |
| abstract_inverted_index.device | 30 |
| abstract_inverted_index.labor. | 52 |
| abstract_inverted_index.models | 140 |
| abstract_inverted_index.online | 98 |
| abstract_inverted_index.second | 129, 139 |
| abstract_inverted_index.strong | 85 |
| abstract_inverted_index.system | 57 |
| abstract_inverted_index.96.75%, | 146 |
| abstract_inverted_index.dataset | 100, 112, 134 |
| abstract_inverted_index.demands | 3 |
| abstract_inverted_index.divided | 103 |
| abstract_inverted_index.fruits. | 110 |
| abstract_inverted_index.grading | 8 |
| abstract_inverted_index.machine | 51 |
| abstract_inverted_index.models, | 130 |
| abstract_inverted_index.picture | 99 |
| abstract_inverted_index.quality | 13, 24, 34 |
| abstract_inverted_index.trained | 95 |
| abstract_inverted_index.approach | 20 |
| abstract_inverted_index.assesses | 76 |
| abstract_inverted_index.decrease | 46 |
| abstract_inverted_index.efficacy | 150 |
| abstract_inverted_index.emphasis | 67 |
| abstract_inverted_index.end-user | 69 |
| abstract_inverted_index.enhanced | 11 |
| abstract_inverted_index.findings | 116 |
| abstract_inverted_index.learning | 41 |
| abstract_inverted_index.portable | 29 |
| abstract_inverted_index.presents | 17 |
| abstract_inverted_index.research | 16 |
| abstract_inverted_index.transfer | 37 |
| abstract_inverted_index.approach, | 42 |
| abstract_inverted_index.companies | 9 |
| abstract_inverted_index.evaluated | 61 |
| abstract_inverted_index.learning, | 38 |
| abstract_inverted_index.numerical | 115 |
| abstract_inverted_index.real-time | 63 |
| abstract_inverted_index.resulting | 43 |
| abstract_inverted_index.validated | 59 |
| abstract_inverted_index.validates | 74 |
| abstract_inverted_index.Meanwhile, | 132 |
| abstract_inverted_index.accuracies | 120, 142 |
| abstract_inverted_index.burgeoning | 2 |
| abstract_inverted_index.end-users. | 91 |
| abstract_inverted_index.inspection | 35 |
| abstract_inverted_index.real-world | 81 |
| abstract_inverted_index.rigorously | 73 |
| abstract_inverted_index.scenarios, | 82 |
| abstract_inverted_index.system’s | 78 |
| abstract_inverted_index.‘good’ | 107 |
| abstract_inverted_index.‘poor’ | 109 |
| abstract_inverted_index.assessment. | 25 |
| abstract_inverted_index.categories: | 106 |
| abstract_inverted_index.outstanding | 118 |
| abstract_inverted_index.performance | 54, 79 |
| abstract_inverted_index.situations, | 64 |
| abstract_inverted_index.cutting-edge | 19 |
| abstract_inverted_index.highlighting | 148 |
| abstract_inverted_index.practicality | 89 |
| abstract_inverted_index.respectively, | 147 |
| abstract_inverted_index.respectively. | 131 |
| abstract_inverted_index.agriculturists | 6 |
| abstract_inverted_index.applicability. | 70 |
| abstract_inverted_index.classification | 119 |
| abstract_inverted_index.<p>Amidst | 0 |
| abstract_inverted_index.classification, | 14 |
| abstract_inverted_index.technique.</p> | 153 |
| cited_by_percentile_year.max | 95 |
| cited_by_percentile_year.min | 90 |
| countries_distinct_count | 0 |
| institutions_distinct_count | 5 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/8 |
| sustainable_development_goals[0].score | 0.5600000023841858 |
| sustainable_development_goals[0].display_name | Decent work and economic growth |
| citation_normalized_percentile.value | 0.61569149 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |