Intelligent generation and optimization of resources in music teaching reform based on artificial intelligence and deep learning Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.1038/s41598-025-16458-8
In order to increase the effectiveness and personalization of music instruction, this paper aims to create a deep reinforcement learning (DRL)-based framework for creating music resources. Therefore, a Melody Generation Model in Music Education Based on Actor-Critic Framework (AC-MGME) is proposed. This model analyzes students' learning status in real time through AC-MGME algorithm, generates melodies that match their abilities, and enhances the polyphonic generation effect by using multi-label classification and attention mechanism. According to the testing results, the proposed model clearly outperforms the baseline Deep Q-Network (DQN) algorithm, achieving 95.95% accuracy and 91.02% F1 score in melody generation quality with a generation time of 2.69 s. Therefore, the constructed model can not only generate high-quality personalized melody, but also shows a significant improvement in improving user experience and learning effect, providing reference direction for the generation and optimization of intelligent resources in music teaching.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1038/s41598-025-16458-8
- https://www.nature.com/articles/s41598-025-16458-8.pdf
- OA Status
- gold
- Cited By
- 1
- References
- 31
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4413309572
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4413309572Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1038/s41598-025-16458-8Digital Object Identifier
- Title
-
Intelligent generation and optimization of resources in music teaching reform based on artificial intelligence and deep learningWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-08-17Full publication date if available
- Authors
-
Cheng Ding, Xiaoyu QuList of authors in order
- Landing page
-
https://doi.org/10.1038/s41598-025-16458-8Publisher landing page
- PDF URL
-
https://www.nature.com/articles/s41598-025-16458-8.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://www.nature.com/articles/s41598-025-16458-8.pdfDirect OA link when available
- Concepts
-
Computer science, Polyphony, Personalization, Melody, Reinforcement learning, Artificial intelligence, Deep learning, Personalized learning, Baseline (sea), Quality (philosophy), Machine learning, Multimedia, Teaching method, Cooperative learning, Mathematics education, World Wide Web, Musical, Physics, Mathematics, Oceanography, Acoustics, Philosophy, Open learning, Visual arts, Art, Epistemology, GeologyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
1Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1Per-year citation counts (last 5 years)
- References (count)
-
31Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4413309572 |
|---|---|
| doi | https://doi.org/10.1038/s41598-025-16458-8 |
| ids.doi | https://doi.org/10.1038/s41598-025-16458-8 |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/40820215 |
| ids.openalex | https://openalex.org/W4413309572 |
| fwci | 5.32681814 |
| type | article |
| title | Intelligent generation and optimization of resources in music teaching reform based on artificial intelligence and deep learning |
| biblio.issue | 1 |
| biblio.volume | 15 |
| biblio.last_page | 30051 |
| biblio.first_page | 30051 |
| topics[0].id | https://openalex.org/T11309 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9796000123023987 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1711 |
| topics[0].subfield.display_name | Signal Processing |
| topics[0].display_name | Music and Audio Processing |
| topics[1].id | https://openalex.org/T11349 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.958299994468689 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1707 |
| topics[1].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[1].display_name | Music Technology and Sound Studies |
| topics[2].id | https://openalex.org/T10788 |
| topics[2].field.id | https://openalex.org/fields/28 |
| topics[2].field.display_name | Neuroscience |
| topics[2].score | 0.9150999784469604 |
| topics[2].domain.id | https://openalex.org/domains/1 |
| topics[2].domain.display_name | Life Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2805 |
| topics[2].subfield.display_name | Cognitive Neuroscience |
| topics[2].display_name | Neuroscience and Music Perception |
| is_xpac | False |
| apc_list.value | 1890 |
| apc_list.currency | EUR |
| apc_list.value_usd | 2190 |
| apc_paid.value | 1890 |
| apc_paid.currency | EUR |
| apc_paid.value_usd | 2190 |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.8055309057235718 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C128979739 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6633063554763794 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q179465 |
| concepts[1].display_name | Polyphony |
| concepts[2].id | https://openalex.org/C183003079 |
| concepts[2].level | 2 |
| concepts[2].score | 0.660069465637207 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q1000371 |
| concepts[2].display_name | Personalization |
| concepts[3].id | https://openalex.org/C43803900 |
| concepts[3].level | 3 |
| concepts[3].score | 0.6299504637718201 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q170412 |
| concepts[3].display_name | Melody |
| concepts[4].id | https://openalex.org/C97541855 |
| concepts[4].level | 2 |
| concepts[4].score | 0.6207960844039917 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q830687 |
| concepts[4].display_name | Reinforcement learning |
| concepts[5].id | https://openalex.org/C154945302 |
| concepts[5].level | 1 |
| concepts[5].score | 0.5997546315193176 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[5].display_name | Artificial intelligence |
| concepts[6].id | https://openalex.org/C108583219 |
| concepts[6].level | 2 |
| concepts[6].score | 0.5797315239906311 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q197536 |
| concepts[6].display_name | Deep learning |
| concepts[7].id | https://openalex.org/C142039133 |
| concepts[7].level | 5 |
| concepts[7].score | 0.4685291647911072 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q3620943 |
| concepts[7].display_name | Personalized learning |
| concepts[8].id | https://openalex.org/C12725497 |
| concepts[8].level | 2 |
| concepts[8].score | 0.4648266136646271 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q810247 |
| concepts[8].display_name | Baseline (sea) |
| concepts[9].id | https://openalex.org/C2779530757 |
| concepts[9].level | 2 |
| concepts[9].score | 0.4590230882167816 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q1207505 |
| concepts[9].display_name | Quality (philosophy) |
| concepts[10].id | https://openalex.org/C119857082 |
| concepts[10].level | 1 |
| concepts[10].score | 0.4275498390197754 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[10].display_name | Machine learning |
| concepts[11].id | https://openalex.org/C49774154 |
| concepts[11].level | 1 |
| concepts[11].score | 0.3237869143486023 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q131765 |
| concepts[11].display_name | Multimedia |
| concepts[12].id | https://openalex.org/C88610354 |
| concepts[12].level | 2 |
| concepts[12].score | 0.21108439564704895 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q1813494 |
| concepts[12].display_name | Teaching method |
| concepts[13].id | https://openalex.org/C51672120 |
| concepts[13].level | 3 |
| concepts[13].score | 0.12762635946273804 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q303446 |
| concepts[13].display_name | Cooperative learning |
| concepts[14].id | https://openalex.org/C145420912 |
| concepts[14].level | 1 |
| concepts[14].score | 0.11243951320648193 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q853077 |
| concepts[14].display_name | Mathematics education |
| concepts[15].id | https://openalex.org/C136764020 |
| concepts[15].level | 1 |
| concepts[15].score | 0.10660499334335327 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q466 |
| concepts[15].display_name | World Wide Web |
| concepts[16].id | https://openalex.org/C558565934 |
| concepts[16].level | 2 |
| concepts[16].score | 0.1036701500415802 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q2743 |
| concepts[16].display_name | Musical |
| concepts[17].id | https://openalex.org/C121332964 |
| concepts[17].level | 0 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[17].display_name | Physics |
| concepts[18].id | https://openalex.org/C33923547 |
| concepts[18].level | 0 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[18].display_name | Mathematics |
| concepts[19].id | https://openalex.org/C111368507 |
| concepts[19].level | 1 |
| concepts[19].score | 0.0 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q43518 |
| concepts[19].display_name | Oceanography |
| concepts[20].id | https://openalex.org/C24890656 |
| concepts[20].level | 1 |
| concepts[20].score | 0.0 |
| concepts[20].wikidata | https://www.wikidata.org/wiki/Q82811 |
| concepts[20].display_name | Acoustics |
| concepts[21].id | https://openalex.org/C138885662 |
| concepts[21].level | 0 |
| concepts[21].score | 0.0 |
| concepts[21].wikidata | https://www.wikidata.org/wiki/Q5891 |
| concepts[21].display_name | Philosophy |
| concepts[22].id | https://openalex.org/C15122004 |
| concepts[22].level | 4 |
| concepts[22].score | 0.0 |
| concepts[22].wikidata | https://www.wikidata.org/wiki/Q385756 |
| concepts[22].display_name | Open learning |
| concepts[23].id | https://openalex.org/C153349607 |
| concepts[23].level | 1 |
| concepts[23].score | 0.0 |
| concepts[23].wikidata | https://www.wikidata.org/wiki/Q36649 |
| concepts[23].display_name | Visual arts |
| concepts[24].id | https://openalex.org/C142362112 |
| concepts[24].level | 0 |
| concepts[24].score | 0.0 |
| concepts[24].wikidata | https://www.wikidata.org/wiki/Q735 |
| concepts[24].display_name | Art |
| concepts[25].id | https://openalex.org/C111472728 |
| concepts[25].level | 1 |
| concepts[25].score | 0.0 |
| concepts[25].wikidata | https://www.wikidata.org/wiki/Q9471 |
| concepts[25].display_name | Epistemology |
| concepts[26].id | https://openalex.org/C127313418 |
| concepts[26].level | 0 |
| concepts[26].score | 0.0 |
| concepts[26].wikidata | https://www.wikidata.org/wiki/Q1069 |
| concepts[26].display_name | Geology |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.8055309057235718 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/polyphony |
| keywords[1].score | 0.6633063554763794 |
| keywords[1].display_name | Polyphony |
| keywords[2].id | https://openalex.org/keywords/personalization |
| keywords[2].score | 0.660069465637207 |
| keywords[2].display_name | Personalization |
| keywords[3].id | https://openalex.org/keywords/melody |
| keywords[3].score | 0.6299504637718201 |
| keywords[3].display_name | Melody |
| keywords[4].id | https://openalex.org/keywords/reinforcement-learning |
| keywords[4].score | 0.6207960844039917 |
| keywords[4].display_name | Reinforcement learning |
| keywords[5].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[5].score | 0.5997546315193176 |
| keywords[5].display_name | Artificial intelligence |
| keywords[6].id | https://openalex.org/keywords/deep-learning |
| keywords[6].score | 0.5797315239906311 |
| keywords[6].display_name | Deep learning |
| keywords[7].id | https://openalex.org/keywords/personalized-learning |
| keywords[7].score | 0.4685291647911072 |
| keywords[7].display_name | Personalized learning |
| keywords[8].id | https://openalex.org/keywords/baseline |
| keywords[8].score | 0.4648266136646271 |
| keywords[8].display_name | Baseline (sea) |
| keywords[9].id | https://openalex.org/keywords/quality |
| keywords[9].score | 0.4590230882167816 |
| keywords[9].display_name | Quality (philosophy) |
| keywords[10].id | https://openalex.org/keywords/machine-learning |
| keywords[10].score | 0.4275498390197754 |
| keywords[10].display_name | Machine learning |
| keywords[11].id | https://openalex.org/keywords/multimedia |
| keywords[11].score | 0.3237869143486023 |
| keywords[11].display_name | Multimedia |
| keywords[12].id | https://openalex.org/keywords/teaching-method |
| keywords[12].score | 0.21108439564704895 |
| keywords[12].display_name | Teaching method |
| keywords[13].id | https://openalex.org/keywords/cooperative-learning |
| keywords[13].score | 0.12762635946273804 |
| keywords[13].display_name | Cooperative learning |
| keywords[14].id | https://openalex.org/keywords/mathematics-education |
| keywords[14].score | 0.11243951320648193 |
| keywords[14].display_name | Mathematics education |
| keywords[15].id | https://openalex.org/keywords/world-wide-web |
| keywords[15].score | 0.10660499334335327 |
| keywords[15].display_name | World Wide Web |
| keywords[16].id | https://openalex.org/keywords/musical |
| keywords[16].score | 0.1036701500415802 |
| keywords[16].display_name | Musical |
| language | en |
| locations[0].id | doi:10.1038/s41598-025-16458-8 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S196734849 |
| locations[0].source.issn | 2045-2322 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2045-2322 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Scientific Reports |
| locations[0].source.host_organization | https://openalex.org/P4310319908 |
| locations[0].source.host_organization_name | Nature Portfolio |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310319908, https://openalex.org/P4310319965 |
| locations[0].source.host_organization_lineage_names | Nature Portfolio, Springer Nature |
| locations[0].license | |
| locations[0].pdf_url | https://www.nature.com/articles/s41598-025-16458-8.pdf |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Scientific Reports |
| locations[0].landing_page_url | https://doi.org/10.1038/s41598-025-16458-8 |
| locations[1].id | pmid:40820215 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306525036 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | Scientific reports |
| locations[1].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/40820215 |
| locations[2].id | pmh:oai:doaj.org/article:0d8f58c3725d47d7ad4f6a36c6a2e7ff |
| locations[2].is_oa | False |
| locations[2].source.id | https://openalex.org/S4306401280 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[2].source.host_organization | |
| locations[2].source.host_organization_name | |
| locations[2].license | |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | article |
| locations[2].license_id | |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | Scientific Reports, Vol 15, Iss 1, Pp 1-17 (2025) |
| locations[2].landing_page_url | https://doaj.org/article/0d8f58c3725d47d7ad4f6a36c6a2e7ff |
| locations[3].id | pmh:oai:pubmedcentral.nih.gov:12358538 |
| locations[3].is_oa | True |
| locations[3].source.id | https://openalex.org/S2764455111 |
| locations[3].source.issn | |
| locations[3].source.type | repository |
| locations[3].source.is_oa | False |
| locations[3].source.issn_l | |
| locations[3].source.is_core | False |
| locations[3].source.is_in_doaj | False |
| locations[3].source.display_name | PubMed Central |
| locations[3].source.host_organization | https://openalex.org/I1299303238 |
| locations[3].source.host_organization_name | National Institutes of Health |
| locations[3].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[3].license | other-oa |
| locations[3].pdf_url | |
| locations[3].version | submittedVersion |
| locations[3].raw_type | Text |
| locations[3].license_id | https://openalex.org/licenses/other-oa |
| locations[3].is_accepted | False |
| locations[3].is_published | False |
| locations[3].raw_source_name | Sci Rep |
| locations[3].landing_page_url | https://www.ncbi.nlm.nih.gov/pmc/articles/12358538 |
| indexed_in | crossref, doaj, pubmed |
| authorships[0].author.id | https://openalex.org/A5046668332 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-7244-3535 |
| authorships[0].author.display_name | Cheng Ding |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I111971639 |
| authorships[0].affiliations[0].raw_affiliation_string | School of Music and Dance, Qiqihar University, Qiqihar, 161000, China. |
| authorships[0].institutions[0].id | https://openalex.org/I111971639 |
| authorships[0].institutions[0].ror | https://ror.org/01khf5d59 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I111971639 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Qiqihar University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Ding Cheng |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | School of Music and Dance, Qiqihar University, Qiqihar, 161000, China. |
| authorships[1].author.id | https://openalex.org/A5059365849 |
| authorships[1].author.orcid | https://orcid.org/0009-0002-9984-6622 |
| authorships[1].author.display_name | Xiaoyu Qu |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I111971639 |
| authorships[1].affiliations[0].raw_affiliation_string | School of Music and Dance, Qiqihar University, Qiqihar, 161000, China. [email protected]. |
| authorships[1].institutions[0].id | https://openalex.org/I111971639 |
| authorships[1].institutions[0].ror | https://ror.org/01khf5d59 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I111971639 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Qiqihar University |
| authorships[1].author_position | last |
| authorships[1].raw_author_name | Xiaoyu Qu |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | School of Music and Dance, Qiqihar University, Qiqihar, 161000, China. [email protected]. |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.nature.com/articles/s41598-025-16458-8.pdf |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Intelligent generation and optimization of resources in music teaching reform based on artificial intelligence and deep learning |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11309 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9796000123023987 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1711 |
| primary_topic.subfield.display_name | Signal Processing |
| primary_topic.display_name | Music and Audio Processing |
| related_works | https://openalex.org/W2118466154, https://openalex.org/W2411659965, https://openalex.org/W2118371117, https://openalex.org/W4410821105, https://openalex.org/W2383694, https://openalex.org/W2049979679, https://openalex.org/W2110554190, https://openalex.org/W3126416214, https://openalex.org/W4372406133, https://openalex.org/W3164236313 |
| cited_by_count | 1 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| locations_count | 4 |
| best_oa_location.id | doi:10.1038/s41598-025-16458-8 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S196734849 |
| best_oa_location.source.issn | 2045-2322 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2045-2322 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Scientific Reports |
| best_oa_location.source.host_organization | https://openalex.org/P4310319908 |
| best_oa_location.source.host_organization_name | Nature Portfolio |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310319908, https://openalex.org/P4310319965 |
| best_oa_location.source.host_organization_lineage_names | Nature Portfolio, Springer Nature |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://www.nature.com/articles/s41598-025-16458-8.pdf |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Scientific Reports |
| best_oa_location.landing_page_url | https://doi.org/10.1038/s41598-025-16458-8 |
| primary_location.id | doi:10.1038/s41598-025-16458-8 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S196734849 |
| primary_location.source.issn | 2045-2322 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2045-2322 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Scientific Reports |
| primary_location.source.host_organization | https://openalex.org/P4310319908 |
| primary_location.source.host_organization_name | Nature Portfolio |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310319908, https://openalex.org/P4310319965 |
| primary_location.source.host_organization_lineage_names | Nature Portfolio, Springer Nature |
| primary_location.license | |
| primary_location.pdf_url | https://www.nature.com/articles/s41598-025-16458-8.pdf |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Scientific Reports |
| primary_location.landing_page_url | https://doi.org/10.1038/s41598-025-16458-8 |
| publication_date | 2025-08-17 |
| publication_year | 2025 |
| referenced_works | https://openalex.org/W4382246267, https://openalex.org/W4320035136, https://openalex.org/W4402039968, https://openalex.org/W4320478231, https://openalex.org/W4385834286, https://openalex.org/W4313484984, https://openalex.org/W4389365236, https://openalex.org/W4322766100, https://openalex.org/W3216598260, https://openalex.org/W4383911701, https://openalex.org/W4318159260, https://openalex.org/W4313453165, https://openalex.org/W4407632487, https://openalex.org/W4366988472, https://openalex.org/W4390371799, https://openalex.org/W4310541177, https://openalex.org/W4391517491, https://openalex.org/W4311506774, https://openalex.org/W4389478098, https://openalex.org/W4401585558, https://openalex.org/W4392958261, https://openalex.org/W4328053906, https://openalex.org/W4378979503, https://openalex.org/W4362672763, https://openalex.org/W4387362447, https://openalex.org/W4388765126, https://openalex.org/W4380684657, https://openalex.org/W4387410861, https://openalex.org/W4308320805, https://openalex.org/W4316042033, https://openalex.org/W4391103063 |
| referenced_works_count | 31 |
| abstract_inverted_index.a | 16, 27, 100, 120 |
| abstract_inverted_index.F1 | 93 |
| abstract_inverted_index.In | 0 |
| abstract_inverted_index.by | 65 |
| abstract_inverted_index.in | 31, 47, 95, 123, 141 |
| abstract_inverted_index.is | 39 |
| abstract_inverted_index.of | 8, 103, 138 |
| abstract_inverted_index.on | 35 |
| abstract_inverted_index.s. | 105 |
| abstract_inverted_index.to | 2, 14, 73 |
| abstract_inverted_index.and | 6, 59, 69, 91, 127, 136 |
| abstract_inverted_index.but | 117 |
| abstract_inverted_index.can | 110 |
| abstract_inverted_index.for | 22, 133 |
| abstract_inverted_index.not | 111 |
| abstract_inverted_index.the | 4, 61, 74, 77, 82, 107, 134 |
| abstract_inverted_index.2.69 | 104 |
| abstract_inverted_index.Deep | 84 |
| abstract_inverted_index.This | 41 |
| abstract_inverted_index.aims | 13 |
| abstract_inverted_index.also | 118 |
| abstract_inverted_index.deep | 17 |
| abstract_inverted_index.only | 112 |
| abstract_inverted_index.real | 48 |
| abstract_inverted_index.that | 55 |
| abstract_inverted_index.this | 11 |
| abstract_inverted_index.time | 49, 102 |
| abstract_inverted_index.user | 125 |
| abstract_inverted_index.with | 99 |
| abstract_inverted_index.(DQN) | 86 |
| abstract_inverted_index.Based | 34 |
| abstract_inverted_index.Model | 30 |
| abstract_inverted_index.Music | 32 |
| abstract_inverted_index.match | 56 |
| abstract_inverted_index.model | 42, 79, 109 |
| abstract_inverted_index.music | 9, 24, 142 |
| abstract_inverted_index.order | 1 |
| abstract_inverted_index.paper | 12 |
| abstract_inverted_index.score | 94 |
| abstract_inverted_index.shows | 119 |
| abstract_inverted_index.their | 57 |
| abstract_inverted_index.using | 66 |
| abstract_inverted_index.91.02% | 92 |
| abstract_inverted_index.95.95% | 89 |
| abstract_inverted_index.Melody | 28 |
| abstract_inverted_index.create | 15 |
| abstract_inverted_index.effect | 64 |
| abstract_inverted_index.melody | 96 |
| abstract_inverted_index.status | 46 |
| abstract_inverted_index.AC-MGME | 51 |
| abstract_inverted_index.clearly | 80 |
| abstract_inverted_index.effect, | 129 |
| abstract_inverted_index.melody, | 116 |
| abstract_inverted_index.quality | 98 |
| abstract_inverted_index.testing | 75 |
| abstract_inverted_index.through | 50 |
| abstract_inverted_index.accuracy | 90 |
| abstract_inverted_index.analyzes | 43 |
| abstract_inverted_index.baseline | 83 |
| abstract_inverted_index.creating | 23 |
| abstract_inverted_index.enhances | 60 |
| abstract_inverted_index.generate | 113 |
| abstract_inverted_index.increase | 3 |
| abstract_inverted_index.learning | 19, 45, 128 |
| abstract_inverted_index.melodies | 54 |
| abstract_inverted_index.proposed | 78 |
| abstract_inverted_index.results, | 76 |
| abstract_inverted_index.(AC-MGME) | 38 |
| abstract_inverted_index.According | 72 |
| abstract_inverted_index.Education | 33 |
| abstract_inverted_index.Framework | 37 |
| abstract_inverted_index.Q-Network | 85 |
| abstract_inverted_index.achieving | 88 |
| abstract_inverted_index.attention | 70 |
| abstract_inverted_index.direction | 132 |
| abstract_inverted_index.framework | 21 |
| abstract_inverted_index.generates | 53 |
| abstract_inverted_index.improving | 124 |
| abstract_inverted_index.proposed. | 40 |
| abstract_inverted_index.providing | 130 |
| abstract_inverted_index.reference | 131 |
| abstract_inverted_index.resources | 140 |
| abstract_inverted_index.students' | 44 |
| abstract_inverted_index.teaching. | 143 |
| abstract_inverted_index.Generation | 29 |
| abstract_inverted_index.Therefore, | 26, 106 |
| abstract_inverted_index.abilities, | 58 |
| abstract_inverted_index.algorithm, | 52, 87 |
| abstract_inverted_index.experience | 126 |
| abstract_inverted_index.generation | 63, 97, 101, 135 |
| abstract_inverted_index.mechanism. | 71 |
| abstract_inverted_index.polyphonic | 62 |
| abstract_inverted_index.resources. | 25 |
| abstract_inverted_index.(DRL)-based | 20 |
| abstract_inverted_index.constructed | 108 |
| abstract_inverted_index.improvement | 122 |
| abstract_inverted_index.intelligent | 139 |
| abstract_inverted_index.multi-label | 67 |
| abstract_inverted_index.outperforms | 81 |
| abstract_inverted_index.significant | 121 |
| abstract_inverted_index.Actor-Critic | 36 |
| abstract_inverted_index.high-quality | 114 |
| abstract_inverted_index.instruction, | 10 |
| abstract_inverted_index.optimization | 137 |
| abstract_inverted_index.personalized | 115 |
| abstract_inverted_index.effectiveness | 5 |
| abstract_inverted_index.reinforcement | 18 |
| abstract_inverted_index.classification | 68 |
| abstract_inverted_index.personalization | 7 |
| cited_by_percentile_year.max | 95 |
| cited_by_percentile_year.min | 91 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 2 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/4 |
| sustainable_development_goals[0].score | 0.7900000214576721 |
| sustainable_development_goals[0].display_name | Quality Education |
| citation_normalized_percentile.value | 0.91502305 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |