Intelligent Object Recognition of Urban Water Bodies Based on Deep Learning for Multi-Source and Multi-Temporal High Spatial Resolution Remote Sensing Imagery Article Swipe
YOU?
·
· 2020
· Open Access
·
· DOI: https://doi.org/10.3390/s20020397
High spatial resolution remote sensing image (HSRRSI) data provide rich texture, geometric structure, and spatial distribution information for surface water bodies. The rich detail information provides better representation of the internal components of each object category and better reflects the relationships between adjacent objects. In this context, recognition methods such as geographic object-based image analysis (GEOBIA) have improved significantly. However, these methods focus mainly on bottom-up classifications from visual features to semantic categories, but ignore top-down feedback which can optimize recognition results. In recent years, deep learning has been applied in the field of remote sensing measurements because of its powerful feature extraction ability. A special convolutional neural network (CNN) based region proposal generation and object detection integrated framework has greatly improved the performance of object detection for HSRRSI, which provides a new method for water body recognition based on remote sensing data. This study uses the excellent “self-learning ability” of deep learning to construct a modified structure of the Mask R-CNN method which integrates bottom-up and top-down processes for water recognition. Compared with traditional methods, our method is completely data-driven without prior knowledge, and it can be regarded as a novel technical procedure for water body recognition in practical engineering application. Experimental results indicate that the method produces accurate recognition results for multi-source and multi-temporal water bodies, and can effectively avoid confusion with shadows and other ground features.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.3390/s20020397
- https://www.mdpi.com/1424-8220/20/2/397/pdf?version=1578658366
- OA Status
- gold
- Cited By
- 49
- References
- 64
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W3000376294
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W3000376294Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.3390/s20020397Digital Object Identifier
- Title
-
Intelligent Object Recognition of Urban Water Bodies Based on Deep Learning for Multi-Source and Multi-Temporal High Spatial Resolution Remote Sensing ImageryWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2020Year of publication
- Publication date
-
2020-01-10Full publication date if available
- Authors
-
Shiran Song, Jianhua Liu, Yuan Liu, Guoqiang Feng, Hui Han, Yuan Yao, Mingyi DuList of authors in order
- Landing page
-
https://doi.org/10.3390/s20020397Publisher landing page
- PDF URL
-
https://www.mdpi.com/1424-8220/20/2/397/pdf?version=1578658366Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://www.mdpi.com/1424-8220/20/2/397/pdf?version=1578658366Direct OA link when available
- Concepts
-
Computer science, Artificial intelligence, Convolutional neural network, Deep learning, Context (archaeology), Focus (optics), Pattern recognition (psychology), Cognitive neuroscience of visual object recognition, Object detection, Feature extraction, Object (grammar), Representation (politics), Field (mathematics), Computer vision, Remote sensing, Geography, Physics, Archaeology, Optics, Mathematics, Politics, Pure mathematics, Law, Political scienceTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
49Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1, 2024: 7, 2023: 16, 2022: 9, 2021: 12Per-year citation counts (last 5 years)
- References (count)
-
64Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W3000376294 |
|---|---|
| doi | https://doi.org/10.3390/s20020397 |
| ids.doi | https://doi.org/10.3390/s20020397 |
| ids.mag | 3000376294 |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/31936791 |
| ids.openalex | https://openalex.org/W3000376294 |
| fwci | 4.06585715 |
| type | article |
| title | Intelligent Object Recognition of Urban Water Bodies Based on Deep Learning for Multi-Source and Multi-Temporal High Spatial Resolution Remote Sensing Imagery |
| biblio.issue | 2 |
| biblio.volume | 20 |
| biblio.last_page | 397 |
| biblio.first_page | 397 |
| topics[0].id | https://openalex.org/T10930 |
| topics[0].field.id | https://openalex.org/fields/23 |
| topics[0].field.display_name | Environmental Science |
| topics[0].score | 0.9990000128746033 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2306 |
| topics[0].subfield.display_name | Global and Planetary Change |
| topics[0].display_name | Flood Risk Assessment and Management |
| topics[1].id | https://openalex.org/T10689 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.9976999759674072 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2214 |
| topics[1].subfield.display_name | Media Technology |
| topics[1].display_name | Remote-Sensing Image Classification |
| topics[2].id | https://openalex.org/T11164 |
| topics[2].field.id | https://openalex.org/fields/23 |
| topics[2].field.display_name | Environmental Science |
| topics[2].score | 0.996399998664856 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2305 |
| topics[2].subfield.display_name | Environmental Engineering |
| topics[2].display_name | Remote Sensing and LiDAR Applications |
| is_xpac | False |
| apc_list.value | 2400 |
| apc_list.currency | CHF |
| apc_list.value_usd | 2598 |
| apc_paid.value | 2400 |
| apc_paid.currency | CHF |
| apc_paid.value_usd | 2598 |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.7620987892150879 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C154945302 |
| concepts[1].level | 1 |
| concepts[1].score | 0.7092799544334412 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[1].display_name | Artificial intelligence |
| concepts[2].id | https://openalex.org/C81363708 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6692208647727966 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q17084460 |
| concepts[2].display_name | Convolutional neural network |
| concepts[3].id | https://openalex.org/C108583219 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5882018208503723 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q197536 |
| concepts[3].display_name | Deep learning |
| concepts[4].id | https://openalex.org/C2779343474 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5444378852844238 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q3109175 |
| concepts[4].display_name | Context (archaeology) |
| concepts[5].id | https://openalex.org/C192209626 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5375229120254517 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q190909 |
| concepts[5].display_name | Focus (optics) |
| concepts[6].id | https://openalex.org/C153180895 |
| concepts[6].level | 2 |
| concepts[6].score | 0.5250059366226196 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[6].display_name | Pattern recognition (psychology) |
| concepts[7].id | https://openalex.org/C64876066 |
| concepts[7].level | 3 |
| concepts[7].score | 0.5133509039878845 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q5141226 |
| concepts[7].display_name | Cognitive neuroscience of visual object recognition |
| concepts[8].id | https://openalex.org/C2776151529 |
| concepts[8].level | 3 |
| concepts[8].score | 0.49682381749153137 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q3045304 |
| concepts[8].display_name | Object detection |
| concepts[9].id | https://openalex.org/C52622490 |
| concepts[9].level | 2 |
| concepts[9].score | 0.46490299701690674 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q1026626 |
| concepts[9].display_name | Feature extraction |
| concepts[10].id | https://openalex.org/C2781238097 |
| concepts[10].level | 2 |
| concepts[10].score | 0.46017566323280334 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q175026 |
| concepts[10].display_name | Object (grammar) |
| concepts[11].id | https://openalex.org/C2776359362 |
| concepts[11].level | 3 |
| concepts[11].score | 0.4444717466831207 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q2145286 |
| concepts[11].display_name | Representation (politics) |
| concepts[12].id | https://openalex.org/C9652623 |
| concepts[12].level | 2 |
| concepts[12].score | 0.4428028464317322 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q190109 |
| concepts[12].display_name | Field (mathematics) |
| concepts[13].id | https://openalex.org/C31972630 |
| concepts[13].level | 1 |
| concepts[13].score | 0.4384247362613678 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q844240 |
| concepts[13].display_name | Computer vision |
| concepts[14].id | https://openalex.org/C62649853 |
| concepts[14].level | 1 |
| concepts[14].score | 0.4230192303657532 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q199687 |
| concepts[14].display_name | Remote sensing |
| concepts[15].id | https://openalex.org/C205649164 |
| concepts[15].level | 0 |
| concepts[15].score | 0.11716461181640625 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q1071 |
| concepts[15].display_name | Geography |
| concepts[16].id | https://openalex.org/C121332964 |
| concepts[16].level | 0 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[16].display_name | Physics |
| concepts[17].id | https://openalex.org/C166957645 |
| concepts[17].level | 1 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q23498 |
| concepts[17].display_name | Archaeology |
| concepts[18].id | https://openalex.org/C120665830 |
| concepts[18].level | 1 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q14620 |
| concepts[18].display_name | Optics |
| concepts[19].id | https://openalex.org/C33923547 |
| concepts[19].level | 0 |
| concepts[19].score | 0.0 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[19].display_name | Mathematics |
| concepts[20].id | https://openalex.org/C94625758 |
| concepts[20].level | 2 |
| concepts[20].score | 0.0 |
| concepts[20].wikidata | https://www.wikidata.org/wiki/Q7163 |
| concepts[20].display_name | Politics |
| concepts[21].id | https://openalex.org/C202444582 |
| concepts[21].level | 1 |
| concepts[21].score | 0.0 |
| concepts[21].wikidata | https://www.wikidata.org/wiki/Q837863 |
| concepts[21].display_name | Pure mathematics |
| concepts[22].id | https://openalex.org/C199539241 |
| concepts[22].level | 1 |
| concepts[22].score | 0.0 |
| concepts[22].wikidata | https://www.wikidata.org/wiki/Q7748 |
| concepts[22].display_name | Law |
| concepts[23].id | https://openalex.org/C17744445 |
| concepts[23].level | 0 |
| concepts[23].score | 0.0 |
| concepts[23].wikidata | https://www.wikidata.org/wiki/Q36442 |
| concepts[23].display_name | Political science |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.7620987892150879 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[1].score | 0.7092799544334412 |
| keywords[1].display_name | Artificial intelligence |
| keywords[2].id | https://openalex.org/keywords/convolutional-neural-network |
| keywords[2].score | 0.6692208647727966 |
| keywords[2].display_name | Convolutional neural network |
| keywords[3].id | https://openalex.org/keywords/deep-learning |
| keywords[3].score | 0.5882018208503723 |
| keywords[3].display_name | Deep learning |
| keywords[4].id | https://openalex.org/keywords/context |
| keywords[4].score | 0.5444378852844238 |
| keywords[4].display_name | Context (archaeology) |
| keywords[5].id | https://openalex.org/keywords/focus |
| keywords[5].score | 0.5375229120254517 |
| keywords[5].display_name | Focus (optics) |
| keywords[6].id | https://openalex.org/keywords/pattern-recognition |
| keywords[6].score | 0.5250059366226196 |
| keywords[6].display_name | Pattern recognition (psychology) |
| keywords[7].id | https://openalex.org/keywords/cognitive-neuroscience-of-visual-object-recognition |
| keywords[7].score | 0.5133509039878845 |
| keywords[7].display_name | Cognitive neuroscience of visual object recognition |
| keywords[8].id | https://openalex.org/keywords/object-detection |
| keywords[8].score | 0.49682381749153137 |
| keywords[8].display_name | Object detection |
| keywords[9].id | https://openalex.org/keywords/feature-extraction |
| keywords[9].score | 0.46490299701690674 |
| keywords[9].display_name | Feature extraction |
| keywords[10].id | https://openalex.org/keywords/object |
| keywords[10].score | 0.46017566323280334 |
| keywords[10].display_name | Object (grammar) |
| keywords[11].id | https://openalex.org/keywords/representation |
| keywords[11].score | 0.4444717466831207 |
| keywords[11].display_name | Representation (politics) |
| keywords[12].id | https://openalex.org/keywords/field |
| keywords[12].score | 0.4428028464317322 |
| keywords[12].display_name | Field (mathematics) |
| keywords[13].id | https://openalex.org/keywords/computer-vision |
| keywords[13].score | 0.4384247362613678 |
| keywords[13].display_name | Computer vision |
| keywords[14].id | https://openalex.org/keywords/remote-sensing |
| keywords[14].score | 0.4230192303657532 |
| keywords[14].display_name | Remote sensing |
| keywords[15].id | https://openalex.org/keywords/geography |
| keywords[15].score | 0.11716461181640625 |
| keywords[15].display_name | Geography |
| language | en |
| locations[0].id | doi:10.3390/s20020397 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S101949793 |
| locations[0].source.issn | 1424-8220 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 1424-8220 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Sensors |
| locations[0].source.host_organization | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://www.mdpi.com/1424-8220/20/2/397/pdf?version=1578658366 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Sensors |
| locations[0].landing_page_url | https://doi.org/10.3390/s20020397 |
| locations[1].id | pmid:31936791 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306525036 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | Sensors (Basel, Switzerland) |
| locations[1].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/31936791 |
| locations[2].id | pmh:oai:doaj.org/article:838c8d3c52d743779a0e3c04dcc2d775 |
| locations[2].is_oa | True |
| locations[2].source.id | https://openalex.org/S4306401280 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[2].source.host_organization | |
| locations[2].source.host_organization_name | |
| locations[2].license | cc-by-sa |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | article |
| locations[2].license_id | https://openalex.org/licenses/cc-by-sa |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | Sensors, Vol 20, Iss 2, p 397 (2020) |
| locations[2].landing_page_url | https://doaj.org/article/838c8d3c52d743779a0e3c04dcc2d775 |
| locations[3].id | pmh:oai:europepmc.org:6004851 |
| locations[3].is_oa | True |
| locations[3].source.id | https://openalex.org/S4306400806 |
| locations[3].source.issn | |
| locations[3].source.type | repository |
| locations[3].source.is_oa | False |
| locations[3].source.issn_l | |
| locations[3].source.is_core | False |
| locations[3].source.is_in_doaj | False |
| locations[3].source.display_name | Europe PMC (PubMed Central) |
| locations[3].source.host_organization | https://openalex.org/I1303153112 |
| locations[3].source.host_organization_name | European Bioinformatics Institute |
| locations[3].source.host_organization_lineage | https://openalex.org/I1303153112 |
| locations[3].license | other-oa |
| locations[3].pdf_url | |
| locations[3].version | submittedVersion |
| locations[3].raw_type | Text |
| locations[3].license_id | https://openalex.org/licenses/other-oa |
| locations[3].is_accepted | False |
| locations[3].is_published | False |
| locations[3].raw_source_name | |
| locations[3].landing_page_url | https://www.ncbi.nlm.nih.gov/pmc/articles/7014233 |
| locations[4].id | pmh:oai:mdpi.com:/1424-8220/20/2/397/ |
| locations[4].is_oa | True |
| locations[4].source.id | https://openalex.org/S4306400947 |
| locations[4].source.issn | |
| locations[4].source.type | repository |
| locations[4].source.is_oa | True |
| locations[4].source.issn_l | |
| locations[4].source.is_core | False |
| locations[4].source.is_in_doaj | False |
| locations[4].source.display_name | MDPI (MDPI AG) |
| locations[4].source.host_organization | https://openalex.org/I4210097602 |
| locations[4].source.host_organization_name | Multidisciplinary Digital Publishing Institute (Switzerland) |
| locations[4].source.host_organization_lineage | https://openalex.org/I4210097602 |
| locations[4].license | cc-by |
| locations[4].pdf_url | |
| locations[4].version | submittedVersion |
| locations[4].raw_type | Text |
| locations[4].license_id | https://openalex.org/licenses/cc-by |
| locations[4].is_accepted | False |
| locations[4].is_published | False |
| locations[4].raw_source_name | Sensors |
| locations[4].landing_page_url | http://dx.doi.org/10.3390/s20020397 |
| indexed_in | crossref, doaj, pubmed |
| authorships[0].author.id | https://openalex.org/A5110661925 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Shiran Song |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I62853816 |
| authorships[0].affiliations[0].raw_affiliation_string | School of Geomatics and Urban Spatial Information, Beijing University of Civil Engineering and Architecture, Beijing 100044, China |
| authorships[0].institutions[0].id | https://openalex.org/I62853816 |
| authorships[0].institutions[0].ror | https://ror.org/02yj0p855 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I62853816 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Beijing University of Civil Engineering and Architecture |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Shiran Song |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | School of Geomatics and Urban Spatial Information, Beijing University of Civil Engineering and Architecture, Beijing 100044, China |
| authorships[1].author.id | https://openalex.org/A5075403066 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-0130-9520 |
| authorships[1].author.display_name | Jianhua Liu |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I4210141849 |
| authorships[1].affiliations[0].raw_affiliation_string | Key Laboratory for Urban Geomatics of National Administration of Surveying, Mapping and Geoinformation, Beijing 100044, China |
| authorships[1].affiliations[1].institution_ids | https://openalex.org/I62853816 |
| authorships[1].affiliations[1].raw_affiliation_string | School of Geomatics and Urban Spatial Information, Beijing University of Civil Engineering and Architecture, Beijing 100044, China |
| authorships[1].institutions[0].id | https://openalex.org/I62853816 |
| authorships[1].institutions[0].ror | https://ror.org/02yj0p855 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I62853816 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Beijing University of Civil Engineering and Architecture |
| authorships[1].institutions[1].id | https://openalex.org/I4210141849 |
| authorships[1].institutions[1].ror | https://ror.org/04z3map19 |
| authorships[1].institutions[1].type | government |
| authorships[1].institutions[1].lineage | https://openalex.org/I4210141849 |
| authorships[1].institutions[1].country_code | CN |
| authorships[1].institutions[1].display_name | National Administration of Surveying, Mapping and Geoinformation of China |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Jianhua Liu |
| authorships[1].is_corresponding | True |
| authorships[1].raw_affiliation_strings | Key Laboratory for Urban Geomatics of National Administration of Surveying, Mapping and Geoinformation, Beijing 100044, China, School of Geomatics and Urban Spatial Information, Beijing University of Civil Engineering and Architecture, Beijing 100044, China |
| authorships[2].author.id | https://openalex.org/A5034194344 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-2933-5667 |
| authorships[2].author.display_name | Yuan Liu |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I62853816 |
| authorships[2].affiliations[0].raw_affiliation_string | School of Geomatics and Urban Spatial Information, Beijing University of Civil Engineering and Architecture, Beijing 100044, China |
| authorships[2].institutions[0].id | https://openalex.org/I62853816 |
| authorships[2].institutions[0].ror | https://ror.org/02yj0p855 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I62853816 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | Beijing University of Civil Engineering and Architecture |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Yuan Liu |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | School of Geomatics and Urban Spatial Information, Beijing University of Civil Engineering and Architecture, Beijing 100044, China |
| authorships[3].author.id | https://openalex.org/A5102395898 |
| authorships[3].author.orcid | |
| authorships[3].author.display_name | Guoqiang Feng |
| authorships[3].countries | CN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I62853816 |
| authorships[3].affiliations[0].raw_affiliation_string | School of Geomatics and Urban Spatial Information, Beijing University of Civil Engineering and Architecture, Beijing 100044, China |
| authorships[3].institutions[0].id | https://openalex.org/I62853816 |
| authorships[3].institutions[0].ror | https://ror.org/02yj0p855 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I62853816 |
| authorships[3].institutions[0].country_code | CN |
| authorships[3].institutions[0].display_name | Beijing University of Civil Engineering and Architecture |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Guoqiang Feng |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | School of Geomatics and Urban Spatial Information, Beijing University of Civil Engineering and Architecture, Beijing 100044, China |
| authorships[4].author.id | https://openalex.org/A5101580391 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-6295-5908 |
| authorships[4].author.display_name | Hui Han |
| authorships[4].countries | CN |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I62853816 |
| authorships[4].affiliations[0].raw_affiliation_string | School of Geomatics and Urban Spatial Information, Beijing University of Civil Engineering and Architecture, Beijing 100044, China |
| authorships[4].institutions[0].id | https://openalex.org/I62853816 |
| authorships[4].institutions[0].ror | https://ror.org/02yj0p855 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I62853816 |
| authorships[4].institutions[0].country_code | CN |
| authorships[4].institutions[0].display_name | Beijing University of Civil Engineering and Architecture |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Hui Han |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | School of Geomatics and Urban Spatial Information, Beijing University of Civil Engineering and Architecture, Beijing 100044, China |
| authorships[5].author.id | https://openalex.org/A5103072099 |
| authorships[5].author.orcid | https://orcid.org/0000-0002-3616-2496 |
| authorships[5].author.display_name | Yuan Yao |
| authorships[5].countries | CN |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I62853816 |
| authorships[5].affiliations[0].raw_affiliation_string | School of Geomatics and Urban Spatial Information, Beijing University of Civil Engineering and Architecture, Beijing 100044, China |
| authorships[5].institutions[0].id | https://openalex.org/I62853816 |
| authorships[5].institutions[0].ror | https://ror.org/02yj0p855 |
| authorships[5].institutions[0].type | education |
| authorships[5].institutions[0].lineage | https://openalex.org/I62853816 |
| authorships[5].institutions[0].country_code | CN |
| authorships[5].institutions[0].display_name | Beijing University of Civil Engineering and Architecture |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Yuan Yao |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | School of Geomatics and Urban Spatial Information, Beijing University of Civil Engineering and Architecture, Beijing 100044, China |
| authorships[6].author.id | https://openalex.org/A5110136256 |
| authorships[6].author.orcid | |
| authorships[6].author.display_name | Mingyi Du |
| authorships[6].countries | CN |
| authorships[6].affiliations[0].institution_ids | https://openalex.org/I4210141849 |
| authorships[6].affiliations[0].raw_affiliation_string | Key Laboratory for Urban Geomatics of National Administration of Surveying, Mapping and Geoinformation, Beijing 100044, China |
| authorships[6].affiliations[1].institution_ids | https://openalex.org/I62853816 |
| authorships[6].affiliations[1].raw_affiliation_string | School of Geomatics and Urban Spatial Information, Beijing University of Civil Engineering and Architecture, Beijing 100044, China |
| authorships[6].institutions[0].id | https://openalex.org/I62853816 |
| authorships[6].institutions[0].ror | https://ror.org/02yj0p855 |
| authorships[6].institutions[0].type | education |
| authorships[6].institutions[0].lineage | https://openalex.org/I62853816 |
| authorships[6].institutions[0].country_code | CN |
| authorships[6].institutions[0].display_name | Beijing University of Civil Engineering and Architecture |
| authorships[6].institutions[1].id | https://openalex.org/I4210141849 |
| authorships[6].institutions[1].ror | https://ror.org/04z3map19 |
| authorships[6].institutions[1].type | government |
| authorships[6].institutions[1].lineage | https://openalex.org/I4210141849 |
| authorships[6].institutions[1].country_code | CN |
| authorships[6].institutions[1].display_name | National Administration of Surveying, Mapping and Geoinformation of China |
| authorships[6].author_position | last |
| authorships[6].raw_author_name | Mingyi Du |
| authorships[6].is_corresponding | False |
| authorships[6].raw_affiliation_strings | Key Laboratory for Urban Geomatics of National Administration of Surveying, Mapping and Geoinformation, Beijing 100044, China, School of Geomatics and Urban Spatial Information, Beijing University of Civil Engineering and Architecture, Beijing 100044, China |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.mdpi.com/1424-8220/20/2/397/pdf?version=1578658366 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Intelligent Object Recognition of Urban Water Bodies Based on Deep Learning for Multi-Source and Multi-Temporal High Spatial Resolution Remote Sensing Imagery |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10930 |
| primary_topic.field.id | https://openalex.org/fields/23 |
| primary_topic.field.display_name | Environmental Science |
| primary_topic.score | 0.9990000128746033 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2306 |
| primary_topic.subfield.display_name | Global and Planetary Change |
| primary_topic.display_name | Flood Risk Assessment and Management |
| related_works | https://openalex.org/W4226493464, https://openalex.org/W3133861977, https://openalex.org/W2951211570, https://openalex.org/W3103566983, https://openalex.org/W2949096641, https://openalex.org/W2969228573, https://openalex.org/W2970686063, https://openalex.org/W4320729701, https://openalex.org/W2963690996, https://openalex.org/W4254103348 |
| cited_by_count | 49 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 7 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 16 |
| counts_by_year[3].year | 2022 |
| counts_by_year[3].cited_by_count | 9 |
| counts_by_year[4].year | 2021 |
| counts_by_year[4].cited_by_count | 12 |
| counts_by_year[5].year | 2020 |
| counts_by_year[5].cited_by_count | 4 |
| locations_count | 5 |
| best_oa_location.id | doi:10.3390/s20020397 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S101949793 |
| best_oa_location.source.issn | 1424-8220 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 1424-8220 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Sensors |
| best_oa_location.source.host_organization | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://www.mdpi.com/1424-8220/20/2/397/pdf?version=1578658366 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Sensors |
| best_oa_location.landing_page_url | https://doi.org/10.3390/s20020397 |
| primary_location.id | doi:10.3390/s20020397 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S101949793 |
| primary_location.source.issn | 1424-8220 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 1424-8220 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Sensors |
| primary_location.source.host_organization | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://www.mdpi.com/1424-8220/20/2/397/pdf?version=1578658366 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Sensors |
| primary_location.landing_page_url | https://doi.org/10.3390/s20020397 |
| publication_date | 2020-01-10 |
| publication_year | 2020 |
| referenced_works | https://openalex.org/W7033753323, https://openalex.org/W2379105857, https://openalex.org/W2372897009, https://openalex.org/W1978271497, https://openalex.org/W2368465679, https://openalex.org/W2363608402, https://openalex.org/W7014958769, https://openalex.org/W2077509829, https://openalex.org/W1978617972, https://openalex.org/W2381966470, https://openalex.org/W1995581599, https://openalex.org/W2145087958, https://openalex.org/W6753035760, https://openalex.org/W3008750128, https://openalex.org/W2103079830, https://openalex.org/W6720780359, https://openalex.org/W2360897380, https://openalex.org/W2387677050, https://openalex.org/W2623768474, https://openalex.org/W2384203002, https://openalex.org/W1975292924, https://openalex.org/W2350521817, https://openalex.org/W2089716607, https://openalex.org/W2011618715, https://openalex.org/W2360672329, https://openalex.org/W318364127, https://openalex.org/W2004790262, https://openalex.org/W1994517143, https://openalex.org/W2102605133, https://openalex.org/W2618530766, https://openalex.org/W6640054144, https://openalex.org/W2919115771, https://openalex.org/W2912961521, https://openalex.org/W2512351403, https://openalex.org/W2789436332, https://openalex.org/W2005368619, https://openalex.org/W2767805377, https://openalex.org/W2768420873, https://openalex.org/W2753248899, https://openalex.org/W2574404198, https://openalex.org/W2517660364, https://openalex.org/W2332185029, https://openalex.org/W2557543785, https://openalex.org/W2041100636, https://openalex.org/W1972524915, https://openalex.org/W2897936062, https://openalex.org/W2952335785, https://openalex.org/W2194775991, https://openalex.org/W4388297464, https://openalex.org/W2117812871, https://openalex.org/W4242212377, https://openalex.org/W2565639579, https://openalex.org/W2963150697, https://openalex.org/W2362285410, https://openalex.org/W2043671828, https://openalex.org/W3145882272, https://openalex.org/W2473250762, https://openalex.org/W2883466786, https://openalex.org/W2038302904, https://openalex.org/W1903029394, https://openalex.org/W4385285836, https://openalex.org/W2395611524, https://openalex.org/W2952632681, https://openalex.org/W2367316394 |
| referenced_works_count | 64 |
| abstract_inverted_index.A | 104 |
| abstract_inverted_index.a | 131, 155, 190 |
| abstract_inverted_index.In | 44, 82 |
| abstract_inverted_index.as | 50, 189 |
| abstract_inverted_index.be | 187 |
| abstract_inverted_index.in | 90, 198 |
| abstract_inverted_index.is | 178 |
| abstract_inverted_index.it | 185 |
| abstract_inverted_index.of | 28, 32, 93, 98, 124, 150, 158 |
| abstract_inverted_index.on | 64, 139 |
| abstract_inverted_index.to | 70, 153 |
| abstract_inverted_index.The | 21 |
| abstract_inverted_index.and | 13, 36, 114, 166, 184, 214, 218, 225 |
| abstract_inverted_index.but | 73 |
| abstract_inverted_index.can | 78, 186, 219 |
| abstract_inverted_index.for | 17, 127, 134, 169, 194, 212 |
| abstract_inverted_index.has | 87, 119 |
| abstract_inverted_index.its | 99 |
| abstract_inverted_index.new | 132 |
| abstract_inverted_index.our | 176 |
| abstract_inverted_index.the | 29, 39, 91, 122, 146, 159, 206 |
| abstract_inverted_index.High | 0 |
| abstract_inverted_index.Mask | 160 |
| abstract_inverted_index.This | 143 |
| abstract_inverted_index.been | 88 |
| abstract_inverted_index.body | 136, 196 |
| abstract_inverted_index.data | 7 |
| abstract_inverted_index.deep | 85, 151 |
| abstract_inverted_index.each | 33 |
| abstract_inverted_index.from | 67 |
| abstract_inverted_index.have | 56 |
| abstract_inverted_index.rich | 9, 22 |
| abstract_inverted_index.such | 49 |
| abstract_inverted_index.that | 205 |
| abstract_inverted_index.this | 45 |
| abstract_inverted_index.uses | 145 |
| abstract_inverted_index.with | 173, 223 |
| abstract_inverted_index.(CNN) | 109 |
| abstract_inverted_index.R-CNN | 161 |
| abstract_inverted_index.avoid | 221 |
| abstract_inverted_index.based | 110, 138 |
| abstract_inverted_index.data. | 142 |
| abstract_inverted_index.field | 92 |
| abstract_inverted_index.focus | 62 |
| abstract_inverted_index.image | 5, 53 |
| abstract_inverted_index.novel | 191 |
| abstract_inverted_index.other | 226 |
| abstract_inverted_index.prior | 182 |
| abstract_inverted_index.study | 144 |
| abstract_inverted_index.these | 60 |
| abstract_inverted_index.water | 19, 135, 170, 195, 216 |
| abstract_inverted_index.which | 77, 129, 163 |
| abstract_inverted_index.better | 26, 37 |
| abstract_inverted_index.detail | 23 |
| abstract_inverted_index.ground | 227 |
| abstract_inverted_index.ignore | 74 |
| abstract_inverted_index.mainly | 63 |
| abstract_inverted_index.method | 133, 162, 177, 207 |
| abstract_inverted_index.neural | 107 |
| abstract_inverted_index.object | 34, 115, 125 |
| abstract_inverted_index.recent | 83 |
| abstract_inverted_index.region | 111 |
| abstract_inverted_index.remote | 3, 94, 140 |
| abstract_inverted_index.visual | 68 |
| abstract_inverted_index.years, | 84 |
| abstract_inverted_index.HSRRSI, | 128 |
| abstract_inverted_index.applied | 89 |
| abstract_inverted_index.because | 97 |
| abstract_inverted_index.between | 41 |
| abstract_inverted_index.bodies, | 217 |
| abstract_inverted_index.bodies. | 20 |
| abstract_inverted_index.feature | 101 |
| abstract_inverted_index.greatly | 120 |
| abstract_inverted_index.methods | 48, 61 |
| abstract_inverted_index.network | 108 |
| abstract_inverted_index.provide | 8 |
| abstract_inverted_index.results | 203, 211 |
| abstract_inverted_index.sensing | 4, 95, 141 |
| abstract_inverted_index.shadows | 224 |
| abstract_inverted_index.spatial | 1, 14 |
| abstract_inverted_index.special | 105 |
| abstract_inverted_index.surface | 18 |
| abstract_inverted_index.without | 181 |
| abstract_inverted_index.(GEOBIA) | 55 |
| abstract_inverted_index.(HSRRSI) | 6 |
| abstract_inverted_index.Compared | 172 |
| abstract_inverted_index.However, | 59 |
| abstract_inverted_index.ability. | 103 |
| abstract_inverted_index.accurate | 209 |
| abstract_inverted_index.adjacent | 42 |
| abstract_inverted_index.analysis | 54 |
| abstract_inverted_index.category | 35 |
| abstract_inverted_index.context, | 46 |
| abstract_inverted_index.features | 69 |
| abstract_inverted_index.feedback | 76 |
| abstract_inverted_index.improved | 57, 121 |
| abstract_inverted_index.indicate | 204 |
| abstract_inverted_index.internal | 30 |
| abstract_inverted_index.learning | 86, 152 |
| abstract_inverted_index.methods, | 175 |
| abstract_inverted_index.modified | 156 |
| abstract_inverted_index.objects. | 43 |
| abstract_inverted_index.optimize | 79 |
| abstract_inverted_index.powerful | 100 |
| abstract_inverted_index.produces | 208 |
| abstract_inverted_index.proposal | 112 |
| abstract_inverted_index.provides | 25, 130 |
| abstract_inverted_index.reflects | 38 |
| abstract_inverted_index.regarded | 188 |
| abstract_inverted_index.results. | 81 |
| abstract_inverted_index.semantic | 71 |
| abstract_inverted_index.texture, | 10 |
| abstract_inverted_index.top-down | 75, 167 |
| abstract_inverted_index.bottom-up | 65, 165 |
| abstract_inverted_index.confusion | 222 |
| abstract_inverted_index.construct | 154 |
| abstract_inverted_index.detection | 116, 126 |
| abstract_inverted_index.excellent | 147 |
| abstract_inverted_index.features. | 228 |
| abstract_inverted_index.framework | 118 |
| abstract_inverted_index.geometric | 11 |
| abstract_inverted_index.practical | 199 |
| abstract_inverted_index.procedure | 193 |
| abstract_inverted_index.processes | 168 |
| abstract_inverted_index.structure | 157 |
| abstract_inverted_index.technical | 192 |
| abstract_inverted_index.ability” | 149 |
| abstract_inverted_index.completely | 179 |
| abstract_inverted_index.components | 31 |
| abstract_inverted_index.extraction | 102 |
| abstract_inverted_index.generation | 113 |
| abstract_inverted_index.geographic | 51 |
| abstract_inverted_index.integrated | 117 |
| abstract_inverted_index.integrates | 164 |
| abstract_inverted_index.knowledge, | 183 |
| abstract_inverted_index.resolution | 2 |
| abstract_inverted_index.structure, | 12 |
| abstract_inverted_index.categories, | 72 |
| abstract_inverted_index.data-driven | 180 |
| abstract_inverted_index.effectively | 220 |
| abstract_inverted_index.engineering | 200 |
| abstract_inverted_index.information | 16, 24 |
| abstract_inverted_index.performance | 123 |
| abstract_inverted_index.recognition | 47, 80, 137, 197, 210 |
| abstract_inverted_index.traditional | 174 |
| abstract_inverted_index.Experimental | 202 |
| abstract_inverted_index.application. | 201 |
| abstract_inverted_index.distribution | 15 |
| abstract_inverted_index.measurements | 96 |
| abstract_inverted_index.multi-source | 213 |
| abstract_inverted_index.object-based | 52 |
| abstract_inverted_index.recognition. | 171 |
| abstract_inverted_index.convolutional | 106 |
| abstract_inverted_index.relationships | 40 |
| abstract_inverted_index.multi-temporal | 215 |
| abstract_inverted_index.representation | 27 |
| abstract_inverted_index.significantly. | 58 |
| abstract_inverted_index.classifications | 66 |
| abstract_inverted_index.“self-learning | 148 |
| cited_by_percentile_year.max | 100 |
| cited_by_percentile_year.min | 91 |
| corresponding_author_ids | https://openalex.org/A5075403066 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 7 |
| corresponding_institution_ids | https://openalex.org/I4210141849, https://openalex.org/I62853816 |
| citation_normalized_percentile.value | 0.94710652 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |