Intelligent Offloading in Vehicular Edge Computing: A Comprehensive Review of Deep Reinforcement Learning Approaches and Architectures Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2502.06963
The increasing complexity of Intelligent Transportation Systems (ITS) has led to significant interest in computational offloading to external infrastructures such as edge servers, vehicular nodes, and UAVs. These dynamic and heterogeneous environments pose challenges for traditional offloading strategies, prompting the exploration of Reinforcement Learning (RL) and Deep Reinforcement Learning (DRL) as adaptive decision-making frameworks. This survey presents a comprehensive review of recent advances in DRL-based offloading for vehicular edge computing (VEC). We classify and compare existing works based on learning paradigms (e.g., single-agent, multi-agent), system architectures (e.g., centralized, distributed, hierarchical), and optimization objectives (e.g., latency, energy, fairness). Furthermore, we analyze how Markov Decision Process (MDP) formulations are applied and highlight emerging trends in reward design, coordination mechanisms, and scalability. Finally, we identify open challenges and outline future research directions to guide the development of robust and intelligent offloading strategies for next-generation ITS.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2502.06963
- https://arxiv.org/pdf/2502.06963
- OA Status
- green
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4407423788
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4407423788Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2502.06963Digital Object Identifier
- Title
-
Intelligent Offloading in Vehicular Edge Computing: A Comprehensive Review of Deep Reinforcement Learning Approaches and ArchitecturesWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-02-10Full publication date if available
- Authors
-
Ashab Uddin, Ahmed Hamdi Sakr, Ning ZhangList of authors in order
- Landing page
-
https://arxiv.org/abs/2502.06963Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2502.06963Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2502.06963Direct OA link when available
- Concepts
-
Reinforcement learning, Task (project management), Computer science, Enhanced Data Rates for GSM Evolution, Edge computing, Human–computer interaction, Artificial intelligence, Engineering, Systems engineeringTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4407423788 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2502.06963 |
| ids.doi | https://doi.org/10.48550/arxiv.2502.06963 |
| ids.openalex | https://openalex.org/W4407423788 |
| fwci | |
| type | preprint |
| title | Intelligent Offloading in Vehicular Edge Computing: A Comprehensive Review of Deep Reinforcement Learning Approaches and Architectures |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10273 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.972100019454956 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1705 |
| topics[0].subfield.display_name | Computer Networks and Communications |
| topics[0].display_name | IoT and Edge/Fog Computing |
| topics[1].id | https://openalex.org/T10764 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9690999984741211 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | Privacy-Preserving Technologies in Data |
| topics[2].id | https://openalex.org/T10270 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9434999823570251 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1710 |
| topics[2].subfield.display_name | Information Systems |
| topics[2].display_name | Blockchain Technology Applications and Security |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C97541855 |
| concepts[0].level | 2 |
| concepts[0].score | 0.8431420922279358 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q830687 |
| concepts[0].display_name | Reinforcement learning |
| concepts[1].id | https://openalex.org/C2780451532 |
| concepts[1].level | 2 |
| concepts[1].score | 0.7669205665588379 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q759676 |
| concepts[1].display_name | Task (project management) |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.7359694242477417 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| concepts[3].id | https://openalex.org/C162307627 |
| concepts[3].level | 2 |
| concepts[3].score | 0.6217701435089111 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q204833 |
| concepts[3].display_name | Enhanced Data Rates for GSM Evolution |
| concepts[4].id | https://openalex.org/C2778456923 |
| concepts[4].level | 3 |
| concepts[4].score | 0.5614080429077148 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q5337692 |
| concepts[4].display_name | Edge computing |
| concepts[5].id | https://openalex.org/C107457646 |
| concepts[5].level | 1 |
| concepts[5].score | 0.5362958312034607 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q207434 |
| concepts[5].display_name | Human–computer interaction |
| concepts[6].id | https://openalex.org/C154945302 |
| concepts[6].level | 1 |
| concepts[6].score | 0.4280727505683899 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[6].display_name | Artificial intelligence |
| concepts[7].id | https://openalex.org/C127413603 |
| concepts[7].level | 0 |
| concepts[7].score | 0.08658376336097717 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q11023 |
| concepts[7].display_name | Engineering |
| concepts[8].id | https://openalex.org/C201995342 |
| concepts[8].level | 1 |
| concepts[8].score | 0.0 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q682496 |
| concepts[8].display_name | Systems engineering |
| keywords[0].id | https://openalex.org/keywords/reinforcement-learning |
| keywords[0].score | 0.8431420922279358 |
| keywords[0].display_name | Reinforcement learning |
| keywords[1].id | https://openalex.org/keywords/task |
| keywords[1].score | 0.7669205665588379 |
| keywords[1].display_name | Task (project management) |
| keywords[2].id | https://openalex.org/keywords/computer-science |
| keywords[2].score | 0.7359694242477417 |
| keywords[2].display_name | Computer science |
| keywords[3].id | https://openalex.org/keywords/enhanced-data-rates-for-gsm-evolution |
| keywords[3].score | 0.6217701435089111 |
| keywords[3].display_name | Enhanced Data Rates for GSM Evolution |
| keywords[4].id | https://openalex.org/keywords/edge-computing |
| keywords[4].score | 0.5614080429077148 |
| keywords[4].display_name | Edge computing |
| keywords[5].id | https://openalex.org/keywords/human–computer-interaction |
| keywords[5].score | 0.5362958312034607 |
| keywords[5].display_name | Human–computer interaction |
| keywords[6].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[6].score | 0.4280727505683899 |
| keywords[6].display_name | Artificial intelligence |
| keywords[7].id | https://openalex.org/keywords/engineering |
| keywords[7].score | 0.08658376336097717 |
| keywords[7].display_name | Engineering |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2502.06963 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2502.06963 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2502.06963 |
| locations[1].id | doi:10.48550/arxiv.2502.06963 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2502.06963 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5083706960 |
| authorships[0].author.orcid | https://orcid.org/0009-0002-5450-4063 |
| authorships[0].author.display_name | Ashab Uddin |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Uddin, Ashab |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5052891361 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Ahmed Hamdi Sakr |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Sakr, Ahmed Hamdi |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5100404886 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-8781-4925 |
| authorships[2].author.display_name | Ning Zhang |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Zhang, Ning |
| authorships[2].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2502.06963 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-02-13T00:00:00 |
| display_name | Intelligent Offloading in Vehicular Edge Computing: A Comprehensive Review of Deep Reinforcement Learning Approaches and Architectures |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10273 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.972100019454956 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1705 |
| primary_topic.subfield.display_name | Computer Networks and Communications |
| primary_topic.display_name | IoT and Edge/Fog Computing |
| related_works | https://openalex.org/W4306904969, https://openalex.org/W2138720691, https://openalex.org/W4362501864, https://openalex.org/W3196817267, https://openalex.org/W4324372666, https://openalex.org/W1976600725, https://openalex.org/W4225706866, https://openalex.org/W2914646191, https://openalex.org/W3023564924, https://openalex.org/W2942586735 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2502.06963 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2502.06963 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2502.06963 |
| primary_location.id | pmh:oai:arXiv.org:2502.06963 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2502.06963 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2502.06963 |
| publication_date | 2025-02-10 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 57 |
| abstract_inverted_index.We | 71 |
| abstract_inverted_index.as | 20, 50 |
| abstract_inverted_index.in | 13, 63, 112 |
| abstract_inverted_index.of | 3, 41, 60, 133 |
| abstract_inverted_index.on | 78 |
| abstract_inverted_index.to | 10, 16, 129 |
| abstract_inverted_index.we | 98, 120 |
| abstract_inverted_index.The | 0 |
| abstract_inverted_index.and | 25, 29, 45, 73, 90, 108, 117, 124, 135 |
| abstract_inverted_index.are | 106 |
| abstract_inverted_index.for | 34, 66, 139 |
| abstract_inverted_index.has | 8 |
| abstract_inverted_index.how | 100 |
| abstract_inverted_index.led | 9 |
| abstract_inverted_index.the | 39, 131 |
| abstract_inverted_index.(RL) | 44 |
| abstract_inverted_index.Deep | 46 |
| abstract_inverted_index.ITS. | 141 |
| abstract_inverted_index.This | 54 |
| abstract_inverted_index.edge | 21, 68 |
| abstract_inverted_index.open | 122 |
| abstract_inverted_index.pose | 32 |
| abstract_inverted_index.such | 19 |
| abstract_inverted_index.(DRL) | 49 |
| abstract_inverted_index.(ITS) | 7 |
| abstract_inverted_index.(MDP) | 104 |
| abstract_inverted_index.These | 27 |
| abstract_inverted_index.UAVs. | 26 |
| abstract_inverted_index.based | 77 |
| abstract_inverted_index.guide | 130 |
| abstract_inverted_index.works | 76 |
| abstract_inverted_index.(VEC). | 70 |
| abstract_inverted_index.(e.g., | 81, 86, 93 |
| abstract_inverted_index.Markov | 101 |
| abstract_inverted_index.future | 126 |
| abstract_inverted_index.nodes, | 24 |
| abstract_inverted_index.recent | 61 |
| abstract_inverted_index.review | 59 |
| abstract_inverted_index.reward | 113 |
| abstract_inverted_index.robust | 134 |
| abstract_inverted_index.survey | 55 |
| abstract_inverted_index.system | 84 |
| abstract_inverted_index.trends | 111 |
| abstract_inverted_index.Process | 103 |
| abstract_inverted_index.Systems | 6 |
| abstract_inverted_index.analyze | 99 |
| abstract_inverted_index.applied | 107 |
| abstract_inverted_index.compare | 74 |
| abstract_inverted_index.design, | 114 |
| abstract_inverted_index.dynamic | 28 |
| abstract_inverted_index.energy, | 95 |
| abstract_inverted_index.outline | 125 |
| abstract_inverted_index.Decision | 102 |
| abstract_inverted_index.Finally, | 119 |
| abstract_inverted_index.Learning | 43, 48 |
| abstract_inverted_index.adaptive | 51 |
| abstract_inverted_index.advances | 62 |
| abstract_inverted_index.classify | 72 |
| abstract_inverted_index.emerging | 110 |
| abstract_inverted_index.existing | 75 |
| abstract_inverted_index.external | 17 |
| abstract_inverted_index.identify | 121 |
| abstract_inverted_index.interest | 12 |
| abstract_inverted_index.latency, | 94 |
| abstract_inverted_index.learning | 79 |
| abstract_inverted_index.presents | 56 |
| abstract_inverted_index.research | 127 |
| abstract_inverted_index.servers, | 22 |
| abstract_inverted_index.DRL-based | 64 |
| abstract_inverted_index.computing | 69 |
| abstract_inverted_index.highlight | 109 |
| abstract_inverted_index.paradigms | 80 |
| abstract_inverted_index.prompting | 38 |
| abstract_inverted_index.vehicular | 23, 67 |
| abstract_inverted_index.challenges | 33, 123 |
| abstract_inverted_index.complexity | 2 |
| abstract_inverted_index.directions | 128 |
| abstract_inverted_index.fairness). | 96 |
| abstract_inverted_index.increasing | 1 |
| abstract_inverted_index.objectives | 92 |
| abstract_inverted_index.offloading | 15, 36, 65, 137 |
| abstract_inverted_index.strategies | 138 |
| abstract_inverted_index.Intelligent | 4 |
| abstract_inverted_index.development | 132 |
| abstract_inverted_index.exploration | 40 |
| abstract_inverted_index.frameworks. | 53 |
| abstract_inverted_index.intelligent | 136 |
| abstract_inverted_index.mechanisms, | 116 |
| abstract_inverted_index.significant | 11 |
| abstract_inverted_index.strategies, | 37 |
| abstract_inverted_index.traditional | 35 |
| abstract_inverted_index.Furthermore, | 97 |
| abstract_inverted_index.centralized, | 87 |
| abstract_inverted_index.coordination | 115 |
| abstract_inverted_index.distributed, | 88 |
| abstract_inverted_index.environments | 31 |
| abstract_inverted_index.formulations | 105 |
| abstract_inverted_index.optimization | 91 |
| abstract_inverted_index.scalability. | 118 |
| abstract_inverted_index.Reinforcement | 42, 47 |
| abstract_inverted_index.architectures | 85 |
| abstract_inverted_index.comprehensive | 58 |
| abstract_inverted_index.computational | 14 |
| abstract_inverted_index.heterogeneous | 30 |
| abstract_inverted_index.multi-agent), | 83 |
| abstract_inverted_index.single-agent, | 82 |
| abstract_inverted_index.Transportation | 5 |
| abstract_inverted_index.hierarchical), | 89 |
| abstract_inverted_index.decision-making | 52 |
| abstract_inverted_index.infrastructures | 18 |
| abstract_inverted_index.next-generation | 140 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 3 |
| citation_normalized_percentile |