Intelligent substation communication network fault location method based on dynamic spatiotemporal graph association perception Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.4108/ew.10423
INTRODUCTION: Accurately locating faults in intelligent substation communication networks is crucial for power grid safety. Existing methods fail to fully capture dynamic fault characteristic evolution and complex dependencies within network topologiesOBJECTIVES: This paper aims to (1) model spatiotemporal fault features in communication networks, (2) enhance fault pattern capture through multi-view learning, and (3) improve fault location accuracy.METHODS: We propose a multi-view spatiotemporal dynamic graph network. First, a multi-view graph neural network models spatial dependencies via cross-view comparative learning using topological and attribute data. Second, a gated recurrent unit with dynamic time windows extracts temporal evolution trends, focusing on local fault patterns and short-term dependencies.RESULTS: Evaluations on a 220kV substation communication network show our method achieves higher fault location accuracy versus baselines, effectively capturing spatiotemporal fault characteristics.CONCLUSION: The proposed framework addresses dynamic fault evolution and topological dependencies, providing a robust solution for intelligent substation fault diagnosis.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.4108/ew.10423
- https://publications.eai.eu/index.php/ew/article/download/10423/3728
- OA Status
- diamond
- References
- 8
- OpenAlex ID
- https://openalex.org/W4415503305
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4415503305Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.4108/ew.10423Digital Object Identifier
- Title
-
Intelligent substation communication network fault location method based on dynamic spatiotemporal graph association perceptionWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-10-10Full publication date if available
- Authors
-
Ligang Ye, Wei Li, J. Zhao, Yuanyuan LiuList of authors in order
- Landing page
-
https://doi.org/10.4108/ew.10423Publisher landing page
- PDF URL
-
https://publications.eai.eu/index.php/ew/article/download/10423/3728Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
diamondOpen access status per OpenAlex
- OA URL
-
https://publications.eai.eu/index.php/ew/article/download/10423/3728Direct OA link when available
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
8Number of works referenced by this work
Full payload
| id | https://openalex.org/W4415503305 |
|---|---|
| doi | https://doi.org/10.4108/ew.10423 |
| ids.doi | https://doi.org/10.4108/ew.10423 |
| ids.openalex | https://openalex.org/W4415503305 |
| fwci | 0.0 |
| type | article |
| title | Intelligent substation communication network fault location method based on dynamic spatiotemporal graph association perception |
| biblio.issue | |
| biblio.volume | 12 |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11512 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9940000176429749 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Anomaly Detection Techniques and Applications |
| topics[1].id | https://openalex.org/T10400 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9872000217437744 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1705 |
| topics[1].subfield.display_name | Computer Networks and Communications |
| topics[1].display_name | Network Security and Intrusion Detection |
| topics[2].id | https://openalex.org/T13734 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9757000207901001 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1702 |
| topics[2].subfield.display_name | Artificial Intelligence |
| topics[2].display_name | Advanced Computational Techniques and Applications |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| language | en |
| locations[0].id | doi:10.4108/ew.10423 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S2738613471 |
| locations[0].source.issn | 2032-944X |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2032-944X |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | EAI Endorsed Transactions on Energy Web |
| locations[0].source.host_organization | https://openalex.org/P4310321145 |
| locations[0].source.host_organization_name | European Alliance for Innovation |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310321145 |
| locations[0].source.host_organization_lineage_names | European Alliance for Innovation |
| locations[0].license | cc-by-nc-sa |
| locations[0].pdf_url | https://publications.eai.eu/index.php/ew/article/download/10423/3728 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by-nc-sa |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | EAI Endorsed Transactions on Energy Web |
| locations[0].landing_page_url | https://doi.org/10.4108/ew.10423 |
| locations[1].id | pmh:oai:doaj.org/article:6087ff41f2a5475fb08737061a982258 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | EAI Endorsed Transactions on Energy Web, Vol 12 (2025) |
| locations[1].landing_page_url | https://doaj.org/article/6087ff41f2a5475fb08737061a982258 |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5043965602 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-4801-3762 |
| authorships[0].author.display_name | Ligang Ye |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Ligang Ye |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5100360790 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-2305-2642 |
| authorships[1].author.display_name | Wei Li |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Wenzhang Li |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5070851446 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-6408-2314 |
| authorships[2].author.display_name | J. Zhao |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Jing Zhao |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5100405030 |
| authorships[3].author.orcid | https://orcid.org/0000-0001-8646-8533 |
| authorships[3].author.display_name | Yuanyuan Liu |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Yuanyuan Liu |
| authorships[3].is_corresponding | False |
| has_content.pdf | True |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://publications.eai.eu/index.php/ew/article/download/10423/3728 |
| open_access.oa_status | diamond |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-24T00:00:00 |
| display_name | Intelligent substation communication network fault location method based on dynamic spatiotemporal graph association perception |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11512 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9940000176429749 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Anomaly Detection Techniques and Applications |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | doi:10.4108/ew.10423 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S2738613471 |
| best_oa_location.source.issn | 2032-944X |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2032-944X |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | EAI Endorsed Transactions on Energy Web |
| best_oa_location.source.host_organization | https://openalex.org/P4310321145 |
| best_oa_location.source.host_organization_name | European Alliance for Innovation |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310321145 |
| best_oa_location.source.host_organization_lineage_names | European Alliance for Innovation |
| best_oa_location.license | cc-by-nc-sa |
| best_oa_location.pdf_url | https://publications.eai.eu/index.php/ew/article/download/10423/3728 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by-nc-sa |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | EAI Endorsed Transactions on Energy Web |
| best_oa_location.landing_page_url | https://doi.org/10.4108/ew.10423 |
| primary_location.id | doi:10.4108/ew.10423 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S2738613471 |
| primary_location.source.issn | 2032-944X |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2032-944X |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | EAI Endorsed Transactions on Energy Web |
| primary_location.source.host_organization | https://openalex.org/P4310321145 |
| primary_location.source.host_organization_name | European Alliance for Innovation |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310321145 |
| primary_location.source.host_organization_lineage_names | European Alliance for Innovation |
| primary_location.license | cc-by-nc-sa |
| primary_location.pdf_url | https://publications.eai.eu/index.php/ew/article/download/10423/3728 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by-nc-sa |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | EAI Endorsed Transactions on Energy Web |
| primary_location.landing_page_url | https://doi.org/10.4108/ew.10423 |
| publication_date | 2025-10-10 |
| publication_year | 2025 |
| referenced_works | https://openalex.org/W3035300658, https://openalex.org/W2907492528, https://openalex.org/W2998496395, https://openalex.org/W4309697865, https://openalex.org/W3169827396, https://openalex.org/W4387580919, https://openalex.org/W3208881055, https://openalex.org/W3191802839 |
| referenced_works_count | 8 |
| abstract_inverted_index.a | 59, 66, 84, 106, 137 |
| abstract_inverted_index.We | 57 |
| abstract_inverted_index.in | 4, 40 |
| abstract_inverted_index.is | 9 |
| abstract_inverted_index.on | 97, 105 |
| abstract_inverted_index.to | 18, 34 |
| abstract_inverted_index.(1) | 35 |
| abstract_inverted_index.(2) | 43 |
| abstract_inverted_index.(3) | 52 |
| abstract_inverted_index.The | 126 |
| abstract_inverted_index.and | 25, 51, 80, 101, 133 |
| abstract_inverted_index.for | 11, 140 |
| abstract_inverted_index.our | 112 |
| abstract_inverted_index.via | 74 |
| abstract_inverted_index.This | 31 |
| abstract_inverted_index.aims | 33 |
| abstract_inverted_index.fail | 17 |
| abstract_inverted_index.grid | 13 |
| abstract_inverted_index.show | 111 |
| abstract_inverted_index.time | 90 |
| abstract_inverted_index.unit | 87 |
| abstract_inverted_index.with | 88 |
| abstract_inverted_index.220kV | 107 |
| abstract_inverted_index.data. | 82 |
| abstract_inverted_index.fault | 22, 38, 45, 54, 99, 116, 124, 131, 143 |
| abstract_inverted_index.fully | 19 |
| abstract_inverted_index.gated | 85 |
| abstract_inverted_index.graph | 63, 68 |
| abstract_inverted_index.local | 98 |
| abstract_inverted_index.model | 36 |
| abstract_inverted_index.paper | 32 |
| abstract_inverted_index.power | 12 |
| abstract_inverted_index.using | 78 |
| abstract_inverted_index.First, | 65 |
| abstract_inverted_index.faults | 3 |
| abstract_inverted_index.higher | 115 |
| abstract_inverted_index.method | 113 |
| abstract_inverted_index.models | 71 |
| abstract_inverted_index.neural | 69 |
| abstract_inverted_index.robust | 138 |
| abstract_inverted_index.versus | 119 |
| abstract_inverted_index.within | 28 |
| abstract_inverted_index.Second, | 83 |
| abstract_inverted_index.capture | 20, 47 |
| abstract_inverted_index.complex | 26 |
| abstract_inverted_index.crucial | 10 |
| abstract_inverted_index.dynamic | 21, 62, 89, 130 |
| abstract_inverted_index.enhance | 44 |
| abstract_inverted_index.improve | 53 |
| abstract_inverted_index.methods | 16 |
| abstract_inverted_index.network | 29, 70, 110 |
| abstract_inverted_index.pattern | 46 |
| abstract_inverted_index.propose | 58 |
| abstract_inverted_index.safety. | 14 |
| abstract_inverted_index.spatial | 72 |
| abstract_inverted_index.through | 48 |
| abstract_inverted_index.trends, | 95 |
| abstract_inverted_index.windows | 91 |
| abstract_inverted_index.Existing | 15 |
| abstract_inverted_index.accuracy | 118 |
| abstract_inverted_index.achieves | 114 |
| abstract_inverted_index.extracts | 92 |
| abstract_inverted_index.features | 39 |
| abstract_inverted_index.focusing | 96 |
| abstract_inverted_index.learning | 77 |
| abstract_inverted_index.locating | 2 |
| abstract_inverted_index.location | 55, 117 |
| abstract_inverted_index.network. | 64 |
| abstract_inverted_index.networks | 8 |
| abstract_inverted_index.patterns | 100 |
| abstract_inverted_index.proposed | 127 |
| abstract_inverted_index.solution | 139 |
| abstract_inverted_index.temporal | 93 |
| abstract_inverted_index.addresses | 129 |
| abstract_inverted_index.attribute | 81 |
| abstract_inverted_index.capturing | 122 |
| abstract_inverted_index.evolution | 24, 94, 132 |
| abstract_inverted_index.framework | 128 |
| abstract_inverted_index.learning, | 50 |
| abstract_inverted_index.networks, | 42 |
| abstract_inverted_index.providing | 136 |
| abstract_inverted_index.recurrent | 86 |
| abstract_inverted_index.Accurately | 1 |
| abstract_inverted_index.baselines, | 120 |
| abstract_inverted_index.cross-view | 75 |
| abstract_inverted_index.diagnosis. | 144 |
| abstract_inverted_index.multi-view | 49, 60, 67 |
| abstract_inverted_index.short-term | 102 |
| abstract_inverted_index.substation | 6, 108, 142 |
| abstract_inverted_index.Evaluations | 104 |
| abstract_inverted_index.comparative | 76 |
| abstract_inverted_index.effectively | 121 |
| abstract_inverted_index.intelligent | 5, 141 |
| abstract_inverted_index.topological | 79, 134 |
| abstract_inverted_index.dependencies | 27, 73 |
| abstract_inverted_index.INTRODUCTION: | 0 |
| abstract_inverted_index.communication | 7, 41, 109 |
| abstract_inverted_index.dependencies, | 135 |
| abstract_inverted_index.characteristic | 23 |
| abstract_inverted_index.spatiotemporal | 37, 61, 123 |
| abstract_inverted_index.accuracy.METHODS: | 56 |
| abstract_inverted_index.dependencies.RESULTS: | 103 |
| abstract_inverted_index.topologiesOBJECTIVES: | 30 |
| abstract_inverted_index.characteristics.CONCLUSION: | 125 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 4 |
| citation_normalized_percentile.value | 0.23439046 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |