Intensive pH sampling and variable rate surface application of lime: does it pay? Article Swipe
YOU?
·
· 2019
· Open Access
·
· DOI: https://doi.org/10.22004/ag.econ.285073
The principles of production economics were used to generate profit-maximising lime 'prescriptions’ for each homogenous zone (HZ) within 10 case-study cropping paddocks in the Victorian HRZ, and to quantify the net benefits of the precision liming strategy. The initial pHca distribution within each paddock was obtained using intensive point sampling at the rate of two soil cores per hectare followed by spatial interpolation to a resolution of 10 square metres. The method used to determine the lime rates for each HZ zone involved optimisation, simulation and accommodating the dynamic nature of the acidity of the soil. The expected payoff from the precision strategy was positive for all 10 paddocks. It was shown to depend mostly on the physical attributes of the soil (i.e. in-paddock pH variation and buffering capacity). Net benefits increased substantially as pHca fell from about 5.0 to 4.2. Productivity gains due to increased yield were most important in determining the size of the benefits and more than offset the additional costs. If farmers plan to grow acid tolerant crops and have a relatively homogeneous paddock (CV less than 5%), then they need not worry unduly about the most appropriate method (precision or traditional) for applying lime. But if they want the option of planting high value, acid sensitive crops such as pulses, and if the in-paddock variation in pH exceeds 5%, then it pays to pursue a profit-maximising precision strategy involving intensive pH sampling and variable rate surface application.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- http://ageconsearch.umn.edu/record/285073
- http://ageconsearch.umn.edu/record/285073
- OA Status
- green
- Related Works
- 20
- OpenAlex ID
- https://openalex.org/W2964719188
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W2964719188Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.22004/ag.econ.285073Digital Object Identifier
- Title
-
Intensive pH sampling and variable rate surface application of lime: does it pay?Work title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2019Year of publication
- Publication date
-
2019-01-01Full publication date if available
- Authors
-
Kerry J. Stott, Doug Crawford, S. NorngList of authors in order
- Landing page
-
https://ageconsearch.umn.edu/record/285073Publisher landing page
- PDF URL
-
https://ageconsearch.umn.edu/record/285073Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://ageconsearch.umn.edu/record/285073Direct OA link when available
- Concepts
-
Hectare, Lime, Environmental science, Precision agriculture, Profit (economics), Mathematics, Soil pH, Agricultural engineering, Offset (computer science), Soil science, Statistics, Agronomy, Agriculture, Computer science, Soil water, Economics, Ecology, Biology, Microeconomics, Engineering, Paleontology, Programming languageTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
20Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W2964719188 |
|---|---|
| doi | https://doi.org/10.22004/ag.econ.285073 |
| ids.doi | https://doi.org/10.22004/ag.econ.285073 |
| ids.mag | 2964719188 |
| ids.openalex | https://openalex.org/W2964719188 |
| fwci | 0.0 |
| type | article |
| title | Intensive pH sampling and variable rate surface application of lime: does it pay? |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10098 |
| topics[0].field.id | https://openalex.org/fields/11 |
| topics[0].field.display_name | Agricultural and Biological Sciences |
| topics[0].score | 0.9883999824523926 |
| topics[0].domain.id | https://openalex.org/domains/1 |
| topics[0].domain.display_name | Life Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1102 |
| topics[0].subfield.display_name | Agronomy and Crop Science |
| topics[0].display_name | Ruminant Nutrition and Digestive Physiology |
| topics[1].id | https://openalex.org/T13591 |
| topics[1].field.id | https://openalex.org/fields/11 |
| topics[1].field.display_name | Agricultural and Biological Sciences |
| topics[1].score | 0.9878000020980835 |
| topics[1].domain.id | https://openalex.org/domains/1 |
| topics[1].domain.display_name | Life Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1107 |
| topics[1].subfield.display_name | Forestry |
| topics[1].display_name | Pasture and Agricultural Systems |
| topics[2].id | https://openalex.org/T10004 |
| topics[2].field.id | https://openalex.org/fields/11 |
| topics[2].field.display_name | Agricultural and Biological Sciences |
| topics[2].score | 0.9663000106811523 |
| topics[2].domain.id | https://openalex.org/domains/1 |
| topics[2].domain.display_name | Life Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1111 |
| topics[2].subfield.display_name | Soil Science |
| topics[2].display_name | Soil Carbon and Nitrogen Dynamics |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C202050865 |
| concepts[0].level | 3 |
| concepts[0].score | 0.565704345703125 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q35852 |
| concepts[0].display_name | Hectare |
| concepts[1].id | https://openalex.org/C2778218555 |
| concepts[1].level | 2 |
| concepts[1].score | 0.5629115104675293 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q250423 |
| concepts[1].display_name | Lime |
| concepts[2].id | https://openalex.org/C39432304 |
| concepts[2].level | 0 |
| concepts[2].score | 0.4928405284881592 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q188847 |
| concepts[2].display_name | Environmental science |
| concepts[3].id | https://openalex.org/C120217122 |
| concepts[3].level | 3 |
| concepts[3].score | 0.48007068037986755 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q740083 |
| concepts[3].display_name | Precision agriculture |
| concepts[4].id | https://openalex.org/C181622380 |
| concepts[4].level | 2 |
| concepts[4].score | 0.4692630171775818 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q26911 |
| concepts[4].display_name | Profit (economics) |
| concepts[5].id | https://openalex.org/C33923547 |
| concepts[5].level | 0 |
| concepts[5].score | 0.46618765592575073 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[5].display_name | Mathematics |
| concepts[6].id | https://openalex.org/C198072978 |
| concepts[6].level | 3 |
| concepts[6].score | 0.4632405638694763 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q565649 |
| concepts[6].display_name | Soil pH |
| concepts[7].id | https://openalex.org/C88463610 |
| concepts[7].level | 1 |
| concepts[7].score | 0.4561343789100647 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q194118 |
| concepts[7].display_name | Agricultural engineering |
| concepts[8].id | https://openalex.org/C175291020 |
| concepts[8].level | 2 |
| concepts[8].score | 0.4449964761734009 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q1156822 |
| concepts[8].display_name | Offset (computer science) |
| concepts[9].id | https://openalex.org/C159390177 |
| concepts[9].level | 1 |
| concepts[9].score | 0.37648385763168335 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q9161265 |
| concepts[9].display_name | Soil science |
| concepts[10].id | https://openalex.org/C105795698 |
| concepts[10].level | 1 |
| concepts[10].score | 0.3424776792526245 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[10].display_name | Statistics |
| concepts[11].id | https://openalex.org/C6557445 |
| concepts[11].level | 1 |
| concepts[11].score | 0.33038365840911865 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q173113 |
| concepts[11].display_name | Agronomy |
| concepts[12].id | https://openalex.org/C118518473 |
| concepts[12].level | 2 |
| concepts[12].score | 0.27903449535369873 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q11451 |
| concepts[12].display_name | Agriculture |
| concepts[13].id | https://openalex.org/C41008148 |
| concepts[13].level | 0 |
| concepts[13].score | 0.24816513061523438 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[13].display_name | Computer science |
| concepts[14].id | https://openalex.org/C159750122 |
| concepts[14].level | 2 |
| concepts[14].score | 0.23218807578086853 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q96621023 |
| concepts[14].display_name | Soil water |
| concepts[15].id | https://openalex.org/C162324750 |
| concepts[15].level | 0 |
| concepts[15].score | 0.23030385375022888 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q8134 |
| concepts[15].display_name | Economics |
| concepts[16].id | https://openalex.org/C18903297 |
| concepts[16].level | 1 |
| concepts[16].score | 0.1502964198589325 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q7150 |
| concepts[16].display_name | Ecology |
| concepts[17].id | https://openalex.org/C86803240 |
| concepts[17].level | 0 |
| concepts[17].score | 0.12623387575149536 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q420 |
| concepts[17].display_name | Biology |
| concepts[18].id | https://openalex.org/C175444787 |
| concepts[18].level | 1 |
| concepts[18].score | 0.11492541432380676 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q39072 |
| concepts[18].display_name | Microeconomics |
| concepts[19].id | https://openalex.org/C127413603 |
| concepts[19].level | 0 |
| concepts[19].score | 0.11412587761878967 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q11023 |
| concepts[19].display_name | Engineering |
| concepts[20].id | https://openalex.org/C151730666 |
| concepts[20].level | 1 |
| concepts[20].score | 0.0 |
| concepts[20].wikidata | https://www.wikidata.org/wiki/Q7205 |
| concepts[20].display_name | Paleontology |
| concepts[21].id | https://openalex.org/C199360897 |
| concepts[21].level | 1 |
| concepts[21].score | 0.0 |
| concepts[21].wikidata | https://www.wikidata.org/wiki/Q9143 |
| concepts[21].display_name | Programming language |
| keywords[0].id | https://openalex.org/keywords/hectare |
| keywords[0].score | 0.565704345703125 |
| keywords[0].display_name | Hectare |
| keywords[1].id | https://openalex.org/keywords/lime |
| keywords[1].score | 0.5629115104675293 |
| keywords[1].display_name | Lime |
| keywords[2].id | https://openalex.org/keywords/environmental-science |
| keywords[2].score | 0.4928405284881592 |
| keywords[2].display_name | Environmental science |
| keywords[3].id | https://openalex.org/keywords/precision-agriculture |
| keywords[3].score | 0.48007068037986755 |
| keywords[3].display_name | Precision agriculture |
| keywords[4].id | https://openalex.org/keywords/profit |
| keywords[4].score | 0.4692630171775818 |
| keywords[4].display_name | Profit (economics) |
| keywords[5].id | https://openalex.org/keywords/mathematics |
| keywords[5].score | 0.46618765592575073 |
| keywords[5].display_name | Mathematics |
| keywords[6].id | https://openalex.org/keywords/soil-ph |
| keywords[6].score | 0.4632405638694763 |
| keywords[6].display_name | Soil pH |
| keywords[7].id | https://openalex.org/keywords/agricultural-engineering |
| keywords[7].score | 0.4561343789100647 |
| keywords[7].display_name | Agricultural engineering |
| keywords[8].id | https://openalex.org/keywords/offset |
| keywords[8].score | 0.4449964761734009 |
| keywords[8].display_name | Offset (computer science) |
| keywords[9].id | https://openalex.org/keywords/soil-science |
| keywords[9].score | 0.37648385763168335 |
| keywords[9].display_name | Soil science |
| keywords[10].id | https://openalex.org/keywords/statistics |
| keywords[10].score | 0.3424776792526245 |
| keywords[10].display_name | Statistics |
| keywords[11].id | https://openalex.org/keywords/agronomy |
| keywords[11].score | 0.33038365840911865 |
| keywords[11].display_name | Agronomy |
| keywords[12].id | https://openalex.org/keywords/agriculture |
| keywords[12].score | 0.27903449535369873 |
| keywords[12].display_name | Agriculture |
| keywords[13].id | https://openalex.org/keywords/computer-science |
| keywords[13].score | 0.24816513061523438 |
| keywords[13].display_name | Computer science |
| keywords[14].id | https://openalex.org/keywords/soil-water |
| keywords[14].score | 0.23218807578086853 |
| keywords[14].display_name | Soil water |
| keywords[15].id | https://openalex.org/keywords/economics |
| keywords[15].score | 0.23030385375022888 |
| keywords[15].display_name | Economics |
| keywords[16].id | https://openalex.org/keywords/ecology |
| keywords[16].score | 0.1502964198589325 |
| keywords[16].display_name | Ecology |
| keywords[17].id | https://openalex.org/keywords/biology |
| keywords[17].score | 0.12623387575149536 |
| keywords[17].display_name | Biology |
| keywords[18].id | https://openalex.org/keywords/microeconomics |
| keywords[18].score | 0.11492541432380676 |
| keywords[18].display_name | Microeconomics |
| keywords[19].id | https://openalex.org/keywords/engineering |
| keywords[19].score | 0.11412587761878967 |
| keywords[19].display_name | Engineering |
| language | en |
| locations[0].id | pmh:oai:ageconsearch.umn.edu:285073 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306401616 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | AgEcon Search (University of Minnesota, USA) |
| locations[0].source.host_organization | https://openalex.org/I4210120349 |
| locations[0].source.host_organization_name | University of Minnesota Rochester |
| locations[0].source.host_organization_lineage | https://openalex.org/I4210120349 |
| locations[0].license | |
| locations[0].pdf_url | http://ageconsearch.umn.edu/record/285073 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | Text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | http://ageconsearch.umn.edu/record/285073 |
| locations[0].landing_page_url | http://ageconsearch.umn.edu/record/285073 |
| locations[1].id | mag:2964719188 |
| locations[1].is_oa | False |
| locations[1].source | |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://ageconsearch.umn.edu/record/285073/files/123%20-%20Intensive%20pH%20sampling%20and%20variable%20rate.pdf |
| locations[2].id | doi:10.22004/ag.econ.285073 |
| locations[2].is_oa | True |
| locations[2].source.id | https://openalex.org/S4306401616 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | AgEcon Search (University of Minnesota, USA) |
| locations[2].source.host_organization | https://openalex.org/I4210120349 |
| locations[2].source.host_organization_name | University of Minnesota Rochester |
| locations[2].source.host_organization_lineage | https://openalex.org/I4210120349 |
| locations[2].license | |
| locations[2].pdf_url | |
| locations[2].version | |
| locations[2].raw_type | article-journal |
| locations[2].license_id | |
| locations[2].is_accepted | False |
| locations[2].is_published | |
| locations[2].raw_source_name | |
| locations[2].landing_page_url | https://doi.org/10.22004/ag.econ.285073 |
| indexed_in | datacite |
| authorships[0].author.id | https://openalex.org/A5024485349 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-2793-2866 |
| authorships[0].author.display_name | Kerry J. Stott |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Kerry Stott |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5005413135 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Doug Crawford |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Doug Crawford |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5042778197 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | S. Norng |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Sorn Norng |
| authorships[2].is_corresponding | False |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | http://ageconsearch.umn.edu/record/285073 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Intensive pH sampling and variable rate surface application of lime: does it pay? |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10098 |
| primary_topic.field.id | https://openalex.org/fields/11 |
| primary_topic.field.display_name | Agricultural and Biological Sciences |
| primary_topic.score | 0.9883999824523926 |
| primary_topic.domain.id | https://openalex.org/domains/1 |
| primary_topic.domain.display_name | Life Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1102 |
| primary_topic.subfield.display_name | Agronomy and Crop Science |
| primary_topic.display_name | Ruminant Nutrition and Digestive Physiology |
| related_works | https://openalex.org/W3123622864, https://openalex.org/W1600899109, https://openalex.org/W1983090934, https://openalex.org/W2748704354, https://openalex.org/W3167890515, https://openalex.org/W2955273231, https://openalex.org/W1994119098, https://openalex.org/W1776366074, https://openalex.org/W2024602041, https://openalex.org/W2279864173, https://openalex.org/W2028593165, https://openalex.org/W3171644094, https://openalex.org/W2137859042, https://openalex.org/W3003595761, https://openalex.org/W2018877177, https://openalex.org/W2090251285, https://openalex.org/W3125139083, https://openalex.org/W2168485777, https://openalex.org/W3097275475, https://openalex.org/W3044745823 |
| cited_by_count | 0 |
| locations_count | 3 |
| best_oa_location.id | pmh:oai:ageconsearch.umn.edu:285073 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306401616 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | AgEcon Search (University of Minnesota, USA) |
| best_oa_location.source.host_organization | https://openalex.org/I4210120349 |
| best_oa_location.source.host_organization_name | University of Minnesota Rochester |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I4210120349 |
| best_oa_location.license | |
| best_oa_location.pdf_url | http://ageconsearch.umn.edu/record/285073 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | Text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | http://ageconsearch.umn.edu/record/285073 |
| best_oa_location.landing_page_url | http://ageconsearch.umn.edu/record/285073 |
| primary_location.id | pmh:oai:ageconsearch.umn.edu:285073 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306401616 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | AgEcon Search (University of Minnesota, USA) |
| primary_location.source.host_organization | https://openalex.org/I4210120349 |
| primary_location.source.host_organization_name | University of Minnesota Rochester |
| primary_location.source.host_organization_lineage | https://openalex.org/I4210120349 |
| primary_location.license | |
| primary_location.pdf_url | http://ageconsearch.umn.edu/record/285073 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | Text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | http://ageconsearch.umn.edu/record/285073 |
| primary_location.landing_page_url | http://ageconsearch.umn.edu/record/285073 |
| publication_date | 2019-01-01 |
| publication_year | 2019 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 64, 174, 229 |
| abstract_inverted_index.10 | 18, 67, 107 |
| abstract_inverted_index.HZ | 80 |
| abstract_inverted_index.If | 164 |
| abstract_inverted_index.It | 109 |
| abstract_inverted_index.as | 133, 213 |
| abstract_inverted_index.at | 50 |
| abstract_inverted_index.by | 60 |
| abstract_inverted_index.if | 200, 216 |
| abstract_inverted_index.in | 22, 150, 220 |
| abstract_inverted_index.it | 225 |
| abstract_inverted_index.of | 2, 32, 53, 66, 90, 93, 119, 154, 205 |
| abstract_inverted_index.on | 115 |
| abstract_inverted_index.or | 194 |
| abstract_inverted_index.pH | 124, 221, 235 |
| abstract_inverted_index.to | 7, 27, 63, 73, 112, 139, 144, 167, 227 |
| abstract_inverted_index.(CV | 178 |
| abstract_inverted_index.5%, | 223 |
| abstract_inverted_index.5.0 | 138 |
| abstract_inverted_index.But | 199 |
| abstract_inverted_index.Net | 129 |
| abstract_inverted_index.The | 0, 37, 70, 96 |
| abstract_inverted_index.all | 106 |
| abstract_inverted_index.and | 26, 85, 126, 157, 172, 215, 237 |
| abstract_inverted_index.due | 143 |
| abstract_inverted_index.for | 12, 78, 105, 196 |
| abstract_inverted_index.net | 30 |
| abstract_inverted_index.not | 185 |
| abstract_inverted_index.per | 57 |
| abstract_inverted_index.the | 23, 29, 33, 51, 75, 87, 91, 94, 100, 116, 120, 152, 155, 161, 189, 203, 217 |
| abstract_inverted_index.two | 54 |
| abstract_inverted_index.was | 44, 103, 110 |
| abstract_inverted_index.(HZ) | 16 |
| abstract_inverted_index.4.2. | 140 |
| abstract_inverted_index.5%), | 181 |
| abstract_inverted_index.HRZ, | 25 |
| abstract_inverted_index.acid | 169, 209 |
| abstract_inverted_index.each | 13, 42, 79 |
| abstract_inverted_index.fell | 135 |
| abstract_inverted_index.from | 99, 136 |
| abstract_inverted_index.grow | 168 |
| abstract_inverted_index.have | 173 |
| abstract_inverted_index.high | 207 |
| abstract_inverted_index.less | 179 |
| abstract_inverted_index.lime | 10, 76 |
| abstract_inverted_index.more | 158 |
| abstract_inverted_index.most | 148, 190 |
| abstract_inverted_index.need | 184 |
| abstract_inverted_index.pHca | 39, 134 |
| abstract_inverted_index.pays | 226 |
| abstract_inverted_index.plan | 166 |
| abstract_inverted_index.rate | 52, 239 |
| abstract_inverted_index.size | 153 |
| abstract_inverted_index.soil | 55, 121 |
| abstract_inverted_index.such | 212 |
| abstract_inverted_index.than | 159, 180 |
| abstract_inverted_index.then | 182, 224 |
| abstract_inverted_index.they | 183, 201 |
| abstract_inverted_index.used | 6, 72 |
| abstract_inverted_index.want | 202 |
| abstract_inverted_index.were | 5, 147 |
| abstract_inverted_index.zone | 15, 81 |
| abstract_inverted_index.(i.e. | 122 |
| abstract_inverted_index.about | 137, 188 |
| abstract_inverted_index.cores | 56 |
| abstract_inverted_index.crops | 171, 211 |
| abstract_inverted_index.gains | 142 |
| abstract_inverted_index.lime. | 198 |
| abstract_inverted_index.point | 48 |
| abstract_inverted_index.rates | 77 |
| abstract_inverted_index.shown | 111 |
| abstract_inverted_index.soil. | 95 |
| abstract_inverted_index.using | 46 |
| abstract_inverted_index.worry | 186 |
| abstract_inverted_index.yield | 146 |
| abstract_inverted_index.costs. | 163 |
| abstract_inverted_index.depend | 113 |
| abstract_inverted_index.liming | 35 |
| abstract_inverted_index.method | 71, 192 |
| abstract_inverted_index.mostly | 114 |
| abstract_inverted_index.nature | 89 |
| abstract_inverted_index.offset | 160 |
| abstract_inverted_index.option | 204 |
| abstract_inverted_index.payoff | 98 |
| abstract_inverted_index.pursue | 228 |
| abstract_inverted_index.square | 68 |
| abstract_inverted_index.unduly | 187 |
| abstract_inverted_index.value, | 208 |
| abstract_inverted_index.within | 17, 41 |
| abstract_inverted_index.acidity | 92 |
| abstract_inverted_index.dynamic | 88 |
| abstract_inverted_index.exceeds | 222 |
| abstract_inverted_index.farmers | 165 |
| abstract_inverted_index.hectare | 58 |
| abstract_inverted_index.initial | 38 |
| abstract_inverted_index.metres. | 69 |
| abstract_inverted_index.paddock | 43, 177 |
| abstract_inverted_index.pulses, | 214 |
| abstract_inverted_index.spatial | 61 |
| abstract_inverted_index.surface | 240 |
| abstract_inverted_index.applying | 197 |
| abstract_inverted_index.benefits | 31, 130, 156 |
| abstract_inverted_index.cropping | 20 |
| abstract_inverted_index.expected | 97 |
| abstract_inverted_index.followed | 59 |
| abstract_inverted_index.generate | 8 |
| abstract_inverted_index.involved | 82 |
| abstract_inverted_index.obtained | 45 |
| abstract_inverted_index.paddocks | 21 |
| abstract_inverted_index.physical | 117 |
| abstract_inverted_index.planting | 206 |
| abstract_inverted_index.positive | 104 |
| abstract_inverted_index.quantify | 28 |
| abstract_inverted_index.sampling | 49, 236 |
| abstract_inverted_index.strategy | 102, 232 |
| abstract_inverted_index.tolerant | 170 |
| abstract_inverted_index.variable | 238 |
| abstract_inverted_index.Victorian | 24 |
| abstract_inverted_index.buffering | 127 |
| abstract_inverted_index.determine | 74 |
| abstract_inverted_index.economics | 4 |
| abstract_inverted_index.important | 149 |
| abstract_inverted_index.increased | 131, 145 |
| abstract_inverted_index.intensive | 47, 234 |
| abstract_inverted_index.involving | 233 |
| abstract_inverted_index.paddocks. | 108 |
| abstract_inverted_index.precision | 34, 101, 231 |
| abstract_inverted_index.sensitive | 210 |
| abstract_inverted_index.strategy. | 36 |
| abstract_inverted_index.variation | 125, 219 |
| abstract_inverted_index.(precision | 193 |
| abstract_inverted_index.additional | 162 |
| abstract_inverted_index.attributes | 118 |
| abstract_inverted_index.capacity). | 128 |
| abstract_inverted_index.case-study | 19 |
| abstract_inverted_index.homogenous | 14 |
| abstract_inverted_index.in-paddock | 123, 218 |
| abstract_inverted_index.principles | 1 |
| abstract_inverted_index.production | 3 |
| abstract_inverted_index.relatively | 175 |
| abstract_inverted_index.resolution | 65 |
| abstract_inverted_index.simulation | 84 |
| abstract_inverted_index.appropriate | 191 |
| abstract_inverted_index.determining | 151 |
| abstract_inverted_index.homogeneous | 176 |
| abstract_inverted_index.Productivity | 141 |
| abstract_inverted_index.application. | 241 |
| abstract_inverted_index.distribution | 40 |
| abstract_inverted_index.traditional) | 195 |
| abstract_inverted_index.accommodating | 86 |
| abstract_inverted_index.interpolation | 62 |
| abstract_inverted_index.optimisation, | 83 |
| abstract_inverted_index.substantially | 132 |
| abstract_inverted_index.'prescriptions’ | 11 |
| abstract_inverted_index.profit-maximising | 9, 230 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 3 |
| citation_normalized_percentile.value | 0.08469919 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |