Inter-stock Trend Prediction of Stock Market using Outlier Mining and Association Rule Mining Article Swipe
YOU?
·
· 2017
· Open Access
·
· DOI: https://doi.org/10.5120/ijca2017913810
With the advancement of storage techniques and Digitization of work in every field, the amount of stored data is tremendously increasing.Influence in Information Technology has caused a sizeable change in every sector of the digitized world.One of such sectors is the stock market where data changes constantly.The economy of the country is indicative of the stock market; this sector needs more support for its development in developing countries, which now rely to a great extent on Investments.Stock market generates a large amount of data on daily basis.Using Data Mining techniques like Clustering, Outlier Mining, Association Rule various operations will be performed to analyze the data and retrieve information.This information will serve us to predict the trend of the stock.Ups and downs in stocks of different companies may be related and so may be their trends.The historical data of such companies will be used to derive the relation to determine the collateral effect on the related stocks and the trend, if any.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- http://doi.org/10.5120/ijca2017913810
- https://doi.org/10.5120/ijca2017913810
- OA Status
- bronze
- References
- 8
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W2992924796
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W2992924796Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.5120/ijca2017913810Digital Object Identifier
- Title
-
Inter-stock Trend Prediction of Stock Market using Outlier Mining and Association Rule MiningWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2017Year of publication
- Publication date
-
2017-05-17Full publication date if available
- Authors
-
R. V., Sai Lalith Prasad TList of authors in order
- Landing page
-
https://doi.org/10.5120/ijca2017913810Publisher landing page
- PDF URL
-
https://doi.org/10.5120/ijca2017913810Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
bronzeOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.5120/ijca2017913810Direct OA link when available
- Concepts
-
Association rule learning, Computer science, Outlier, Data mining, Stock market, Stock (firearms), Stock market prediction, Econometrics, Artificial intelligence, Mathematics, Geology, Paleontology, Mechanical engineering, Horse, EngineeringTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
8Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W2992924796 |
|---|---|
| doi | https://doi.org/10.5120/ijca2017913810 |
| ids.doi | https://doi.org/10.5120/ijca2017913810 |
| ids.mag | 2992924796 |
| ids.openalex | https://openalex.org/W2992924796 |
| fwci | 0.0 |
| type | article |
| title | Inter-stock Trend Prediction of Stock Market using Outlier Mining and Association Rule Mining |
| biblio.issue | 5 |
| biblio.volume | 166 |
| biblio.last_page | 15 |
| biblio.first_page | 14 |
| topics[0].id | https://openalex.org/T11326 |
| topics[0].field.id | https://openalex.org/fields/18 |
| topics[0].field.display_name | Decision Sciences |
| topics[0].score | 0.9941999912261963 |
| topics[0].domain.id | https://openalex.org/domains/2 |
| topics[0].domain.display_name | Social Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1803 |
| topics[0].subfield.display_name | Management Science and Operations Research |
| topics[0].display_name | Stock Market Forecasting Methods |
| topics[1].id | https://openalex.org/T10282 |
| topics[1].field.id | https://openalex.org/fields/20 |
| topics[1].field.display_name | Economics, Econometrics and Finance |
| topics[1].score | 0.9919999837875366 |
| topics[1].domain.id | https://openalex.org/domains/2 |
| topics[1].domain.display_name | Social Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2003 |
| topics[1].subfield.display_name | Finance |
| topics[1].display_name | Financial Risk and Volatility Modeling |
| topics[2].id | https://openalex.org/T11270 |
| topics[2].field.id | https://openalex.org/fields/20 |
| topics[2].field.display_name | Economics, Econometrics and Finance |
| topics[2].score | 0.9889000058174133 |
| topics[2].domain.id | https://openalex.org/domains/2 |
| topics[2].domain.display_name | Social Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2002 |
| topics[2].subfield.display_name | Economics and Econometrics |
| topics[2].display_name | Complex Systems and Time Series Analysis |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C193524817 |
| concepts[0].level | 2 |
| concepts[0].score | 0.8475402593612671 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q386780 |
| concepts[0].display_name | Association rule learning |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.7882131338119507 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C79337645 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6348772048950195 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q779824 |
| concepts[2].display_name | Outlier |
| concepts[3].id | https://openalex.org/C124101348 |
| concepts[3].level | 1 |
| concepts[3].score | 0.6195350885391235 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q172491 |
| concepts[3].display_name | Data mining |
| concepts[4].id | https://openalex.org/C2780299701 |
| concepts[4].level | 3 |
| concepts[4].score | 0.5723843574523926 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q475000 |
| concepts[4].display_name | Stock market |
| concepts[5].id | https://openalex.org/C204036174 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5367220044136047 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q909380 |
| concepts[5].display_name | Stock (firearms) |
| concepts[6].id | https://openalex.org/C2776256503 |
| concepts[6].level | 4 |
| concepts[6].score | 0.5285010933876038 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q7617906 |
| concepts[6].display_name | Stock market prediction |
| concepts[7].id | https://openalex.org/C149782125 |
| concepts[7].level | 1 |
| concepts[7].score | 0.3741285800933838 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q160039 |
| concepts[7].display_name | Econometrics |
| concepts[8].id | https://openalex.org/C154945302 |
| concepts[8].level | 1 |
| concepts[8].score | 0.30057233572006226 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[8].display_name | Artificial intelligence |
| concepts[9].id | https://openalex.org/C33923547 |
| concepts[9].level | 0 |
| concepts[9].score | 0.06413322687149048 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[9].display_name | Mathematics |
| concepts[10].id | https://openalex.org/C127313418 |
| concepts[10].level | 0 |
| concepts[10].score | 0.061080098152160645 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q1069 |
| concepts[10].display_name | Geology |
| concepts[11].id | https://openalex.org/C151730666 |
| concepts[11].level | 1 |
| concepts[11].score | 0.0 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q7205 |
| concepts[11].display_name | Paleontology |
| concepts[12].id | https://openalex.org/C78519656 |
| concepts[12].level | 1 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q101333 |
| concepts[12].display_name | Mechanical engineering |
| concepts[13].id | https://openalex.org/C2780762169 |
| concepts[13].level | 2 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q5905368 |
| concepts[13].display_name | Horse |
| concepts[14].id | https://openalex.org/C127413603 |
| concepts[14].level | 0 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q11023 |
| concepts[14].display_name | Engineering |
| keywords[0].id | https://openalex.org/keywords/association-rule-learning |
| keywords[0].score | 0.8475402593612671 |
| keywords[0].display_name | Association rule learning |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.7882131338119507 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/outlier |
| keywords[2].score | 0.6348772048950195 |
| keywords[2].display_name | Outlier |
| keywords[3].id | https://openalex.org/keywords/data-mining |
| keywords[3].score | 0.6195350885391235 |
| keywords[3].display_name | Data mining |
| keywords[4].id | https://openalex.org/keywords/stock-market |
| keywords[4].score | 0.5723843574523926 |
| keywords[4].display_name | Stock market |
| keywords[5].id | https://openalex.org/keywords/stock |
| keywords[5].score | 0.5367220044136047 |
| keywords[5].display_name | Stock (firearms) |
| keywords[6].id | https://openalex.org/keywords/stock-market-prediction |
| keywords[6].score | 0.5285010933876038 |
| keywords[6].display_name | Stock market prediction |
| keywords[7].id | https://openalex.org/keywords/econometrics |
| keywords[7].score | 0.3741285800933838 |
| keywords[7].display_name | Econometrics |
| keywords[8].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[8].score | 0.30057233572006226 |
| keywords[8].display_name | Artificial intelligence |
| keywords[9].id | https://openalex.org/keywords/mathematics |
| keywords[9].score | 0.06413322687149048 |
| keywords[9].display_name | Mathematics |
| keywords[10].id | https://openalex.org/keywords/geology |
| keywords[10].score | 0.061080098152160645 |
| keywords[10].display_name | Geology |
| language | en |
| locations[0].id | doi:10.5120/ijca2017913810 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210206007 |
| locations[0].source.issn | 0975-8887 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | 0975-8887 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | International Journal of Computer Applications |
| locations[0].source.host_organization | |
| locations[0].source.host_organization_name | |
| locations[0].license | |
| locations[0].pdf_url | https://doi.org/10.5120/ijca2017913810 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | International Journal of Computer Applications |
| locations[0].landing_page_url | http://doi.org/10.5120/ijca2017913810 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5111266242 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-2401-8868 |
| authorships[0].author.display_name | R. V. |
| authorships[0].affiliations[0].raw_affiliation_string | Department of Computer Science and Engineering Walchand Institute of Technology, Solapur |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | R. V. |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Department of Computer Science and Engineering Walchand Institute of Technology, Solapur |
| authorships[1].author.id | https://openalex.org/A5012179401 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-9379-8335 |
| authorships[1].author.display_name | Sai Lalith Prasad T |
| authorships[1].affiliations[0].raw_affiliation_string | Department of Computer Science and Engineering Walchand Institute of Technology, Solapur |
| authorships[1].author_position | last |
| authorships[1].raw_author_name | S. T. |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Department of Computer Science and Engineering Walchand Institute of Technology, Solapur |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.5120/ijca2017913810 |
| open_access.oa_status | bronze |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Inter-stock Trend Prediction of Stock Market using Outlier Mining and Association Rule Mining |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11326 |
| primary_topic.field.id | https://openalex.org/fields/18 |
| primary_topic.field.display_name | Decision Sciences |
| primary_topic.score | 0.9941999912261963 |
| primary_topic.domain.id | https://openalex.org/domains/2 |
| primary_topic.domain.display_name | Social Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1803 |
| primary_topic.subfield.display_name | Management Science and Operations Research |
| primary_topic.display_name | Stock Market Forecasting Methods |
| related_works | https://openalex.org/W2586556113, https://openalex.org/W2370669686, https://openalex.org/W2542516223, https://openalex.org/W3135178882, https://openalex.org/W2624043242, https://openalex.org/W3209908847, https://openalex.org/W3023530306, https://openalex.org/W2110351804, https://openalex.org/W1980850818, https://openalex.org/W2785399422 |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.5120/ijca2017913810 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210206007 |
| best_oa_location.source.issn | 0975-8887 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | 0975-8887 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | International Journal of Computer Applications |
| best_oa_location.source.host_organization | |
| best_oa_location.source.host_organization_name | |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://doi.org/10.5120/ijca2017913810 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | International Journal of Computer Applications |
| best_oa_location.landing_page_url | http://doi.org/10.5120/ijca2017913810 |
| primary_location.id | doi:10.5120/ijca2017913810 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210206007 |
| primary_location.source.issn | 0975-8887 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | 0975-8887 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | International Journal of Computer Applications |
| primary_location.source.host_organization | |
| primary_location.source.host_organization_name | |
| primary_location.license | |
| primary_location.pdf_url | https://doi.org/10.5120/ijca2017913810 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | International Journal of Computer Applications |
| primary_location.landing_page_url | http://doi.org/10.5120/ijca2017913810 |
| publication_date | 2017-05-17 |
| publication_year | 2017 |
| referenced_works | https://openalex.org/W2160724530, https://openalex.org/W1989815419, https://openalex.org/W2105369890, https://openalex.org/W3208688400, https://openalex.org/W1922224734, https://openalex.org/W3121438267, https://openalex.org/W2094206697, https://openalex.org/W1508322064 |
| referenced_works_count | 8 |
| abstract_inverted_index.a | 26, 72, 79 |
| abstract_inverted_index.be | 99, 127, 132, 141 |
| abstract_inverted_index.if | 159 |
| abstract_inverted_index.in | 10, 21, 29, 65, 121 |
| abstract_inverted_index.is | 18, 39, 51 |
| abstract_inverted_index.of | 3, 8, 15, 32, 36, 48, 53, 82, 116, 123, 137 |
| abstract_inverted_index.on | 75, 84, 152 |
| abstract_inverted_index.so | 130 |
| abstract_inverted_index.to | 71, 101, 112, 143, 147 |
| abstract_inverted_index.us | 111 |
| abstract_inverted_index.and | 6, 105, 119, 129, 156 |
| abstract_inverted_index.for | 62 |
| abstract_inverted_index.has | 24 |
| abstract_inverted_index.its | 63 |
| abstract_inverted_index.may | 126, 131 |
| abstract_inverted_index.now | 69 |
| abstract_inverted_index.the | 1, 13, 33, 40, 49, 54, 103, 114, 117, 145, 149, 153, 157 |
| abstract_inverted_index.Data | 87 |
| abstract_inverted_index.Rule | 95 |
| abstract_inverted_index.With | 0 |
| abstract_inverted_index.any. | 160 |
| abstract_inverted_index.data | 17, 44, 83, 104, 136 |
| abstract_inverted_index.like | 90 |
| abstract_inverted_index.more | 60 |
| abstract_inverted_index.rely | 70 |
| abstract_inverted_index.such | 37, 138 |
| abstract_inverted_index.this | 57 |
| abstract_inverted_index.used | 142 |
| abstract_inverted_index.will | 98, 109, 140 |
| abstract_inverted_index.work | 9 |
| abstract_inverted_index.daily | 85 |
| abstract_inverted_index.downs | 120 |
| abstract_inverted_index.every | 11, 30 |
| abstract_inverted_index.great | 73 |
| abstract_inverted_index.large | 80 |
| abstract_inverted_index.needs | 59 |
| abstract_inverted_index.serve | 110 |
| abstract_inverted_index.stock | 41, 55 |
| abstract_inverted_index.their | 133 |
| abstract_inverted_index.trend | 115 |
| abstract_inverted_index.where | 43 |
| abstract_inverted_index.which | 68 |
| abstract_inverted_index.Mining | 88 |
| abstract_inverted_index.amount | 14, 81 |
| abstract_inverted_index.caused | 25 |
| abstract_inverted_index.change | 28 |
| abstract_inverted_index.derive | 144 |
| abstract_inverted_index.effect | 151 |
| abstract_inverted_index.extent | 74 |
| abstract_inverted_index.field, | 12 |
| abstract_inverted_index.market | 42, 77 |
| abstract_inverted_index.sector | 31, 58 |
| abstract_inverted_index.stocks | 122, 155 |
| abstract_inverted_index.stored | 16 |
| abstract_inverted_index.trend, | 158 |
| abstract_inverted_index.Mining, | 93 |
| abstract_inverted_index.Outlier | 92 |
| abstract_inverted_index.analyze | 102 |
| abstract_inverted_index.changes | 45 |
| abstract_inverted_index.country | 50 |
| abstract_inverted_index.economy | 47 |
| abstract_inverted_index.market; | 56 |
| abstract_inverted_index.predict | 113 |
| abstract_inverted_index.related | 128, 154 |
| abstract_inverted_index.sectors | 38 |
| abstract_inverted_index.storage | 4 |
| abstract_inverted_index.support | 61 |
| abstract_inverted_index.various | 96 |
| abstract_inverted_index.relation | 146 |
| abstract_inverted_index.retrieve | 106 |
| abstract_inverted_index.sizeable | 27 |
| abstract_inverted_index.companies | 125, 139 |
| abstract_inverted_index.determine | 148 |
| abstract_inverted_index.different | 124 |
| abstract_inverted_index.digitized | 34 |
| abstract_inverted_index.generates | 78 |
| abstract_inverted_index.performed | 100 |
| abstract_inverted_index.stock.Ups | 118 |
| abstract_inverted_index.world.One | 35 |
| abstract_inverted_index.Technology | 23 |
| abstract_inverted_index.collateral | 150 |
| abstract_inverted_index.countries, | 67 |
| abstract_inverted_index.developing | 66 |
| abstract_inverted_index.historical | 135 |
| abstract_inverted_index.indicative | 52 |
| abstract_inverted_index.operations | 97 |
| abstract_inverted_index.techniques | 5, 89 |
| abstract_inverted_index.trends.The | 134 |
| abstract_inverted_index.Association | 94 |
| abstract_inverted_index.Clustering, | 91 |
| abstract_inverted_index.Information | 22 |
| abstract_inverted_index.advancement | 2 |
| abstract_inverted_index.basis.Using | 86 |
| abstract_inverted_index.development | 64 |
| abstract_inverted_index.information | 108 |
| abstract_inverted_index.Digitization | 7 |
| abstract_inverted_index.tremendously | 19 |
| abstract_inverted_index.constantly.The | 46 |
| abstract_inverted_index.information.This | 107 |
| abstract_inverted_index.Investments.Stock | 76 |
| abstract_inverted_index.increasing.Influence | 20 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 2 |
| citation_normalized_percentile.value | 0.35254037 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |