Interacting Immediate Neighbour Interpolation for Geoscientific Data Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2504.15781
A diverse range of interpolation methods, including Kriging, spline/minimum curvature and radial basis function interpolation exist for interpolating spatially incomplete geoscientific data. Such methods use various spatial properties of the observed data to infer its local and global behaviour. In this study, we exploit the adaptability of locally interacting systems from statistical physics and develop an interpolation framework for numerical geoscientific data called Interacting Immediate Neighbour Interpolation (IINI), which solely relies on local and immediate neighbour correlations. In the IINI method, medium-to-long range correlations are constructed from the collective local interactions of grid centroids. To demonstrate the functionality and strengths of IINI, we apply our methodology to the interpolation of ground gravity, airborne magnetic and airborne radiometric datasets. We further compare the performance of IINI to conventional methods such as minimum curvature surface fitting. Results show that IINI is competitive with conventional interpolation techniques in terms of validation accuracy, while being significantly simpler in terms of algorithmic complexity and data pre-processing requirements. IINI demonstrates the broader applicability of statistical physics concepts within the field of geostatistics, highlighting their potential to enrich and expand traditional geostatistical methods.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2504.15781
- https://arxiv.org/pdf/2504.15781
- OA Status
- green
- OpenAlex ID
- https://openalex.org/W4414633048
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4414633048Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2504.15781Digital Object Identifier
- Title
-
Interacting Immediate Neighbour Interpolation for Geoscientific DataWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-04-22Full publication date if available
- Authors
-
Arya Kimiaghalam, Andrei Swidinsky, Mohammad ParsaList of authors in order
- Landing page
-
https://arxiv.org/abs/2504.15781Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2504.15781Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2504.15781Direct OA link when available
- Cited by
-
0Total citation count in OpenAlex
Full payload
| id | https://openalex.org/W4414633048 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2504.15781 |
| ids.doi | https://doi.org/10.48550/arxiv.2504.15781 |
| ids.openalex | https://openalex.org/W4414633048 |
| fwci | |
| type | preprint |
| title | Interacting Immediate Neighbour Interpolation for Geoscientific Data |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10637 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9610000252723694 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Advanced Clustering Algorithms Research |
| topics[1].id | https://openalex.org/T12157 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9589999914169312 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | Geochemistry and Geologic Mapping |
| topics[2].id | https://openalex.org/T10757 |
| topics[2].field.id | https://openalex.org/fields/33 |
| topics[2].field.display_name | Social Sciences |
| topics[2].score | 0.9560999870300293 |
| topics[2].domain.id | https://openalex.org/domains/2 |
| topics[2].domain.display_name | Social Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/3305 |
| topics[2].subfield.display_name | Geography, Planning and Development |
| topics[2].display_name | Geographic Information Systems Studies |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2504.15781 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2504.15781 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2504.15781 |
| locations[1].id | doi:10.48550/arxiv.2504.15781 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2504.15781 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5116926126 |
| authorships[0].author.orcid | https://orcid.org/0009-0004-7507-8889 |
| authorships[0].author.display_name | Arya Kimiaghalam |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Kimiaghalam, Arya |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5021174796 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-6435-6730 |
| authorships[1].author.display_name | Andrei Swidinsky |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Swidinsky, Andrei |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5103141104 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-5291-8487 |
| authorships[2].author.display_name | Mohammad Parsa |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Parsa, Mohammad |
| authorships[2].is_corresponding | False |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2504.15781 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Interacting Immediate Neighbour Interpolation for Geoscientific Data |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10637 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9610000252723694 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Advanced Clustering Algorithms Research |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2504.15781 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2504.15781 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2504.15781 |
| primary_location.id | pmh:oai:arXiv.org:2504.15781 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2504.15781 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2504.15781 |
| publication_date | 2025-04-22 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.A | 0 |
| abstract_inverted_index.In | 39, 77 |
| abstract_inverted_index.To | 94 |
| abstract_inverted_index.We | 118 |
| abstract_inverted_index.an | 55 |
| abstract_inverted_index.as | 129 |
| abstract_inverted_index.in | 144, 153 |
| abstract_inverted_index.is | 138 |
| abstract_inverted_index.of | 3, 28, 46, 91, 100, 109, 123, 146, 155, 167, 174 |
| abstract_inverted_index.on | 71 |
| abstract_inverted_index.to | 32, 106, 125, 179 |
| abstract_inverted_index.we | 42, 102 |
| abstract_inverted_index.and | 10, 36, 53, 73, 98, 114, 158, 181 |
| abstract_inverted_index.are | 84 |
| abstract_inverted_index.for | 16, 58 |
| abstract_inverted_index.its | 34 |
| abstract_inverted_index.our | 104 |
| abstract_inverted_index.the | 29, 44, 78, 87, 96, 107, 121, 164, 172 |
| abstract_inverted_index.use | 24 |
| abstract_inverted_index.IINI | 79, 124, 137, 162 |
| abstract_inverted_index.Such | 22 |
| abstract_inverted_index.data | 31, 61, 159 |
| abstract_inverted_index.from | 50, 86 |
| abstract_inverted_index.grid | 92 |
| abstract_inverted_index.show | 135 |
| abstract_inverted_index.such | 128 |
| abstract_inverted_index.that | 136 |
| abstract_inverted_index.this | 40 |
| abstract_inverted_index.with | 140 |
| abstract_inverted_index.IINI, | 101 |
| abstract_inverted_index.apply | 103 |
| abstract_inverted_index.basis | 12 |
| abstract_inverted_index.being | 150 |
| abstract_inverted_index.data. | 21 |
| abstract_inverted_index.exist | 15 |
| abstract_inverted_index.field | 173 |
| abstract_inverted_index.infer | 33 |
| abstract_inverted_index.local | 35, 72, 89 |
| abstract_inverted_index.range | 2, 82 |
| abstract_inverted_index.terms | 145, 154 |
| abstract_inverted_index.their | 177 |
| abstract_inverted_index.which | 68 |
| abstract_inverted_index.while | 149 |
| abstract_inverted_index.called | 62 |
| abstract_inverted_index.enrich | 180 |
| abstract_inverted_index.expand | 182 |
| abstract_inverted_index.global | 37 |
| abstract_inverted_index.ground | 110 |
| abstract_inverted_index.radial | 11 |
| abstract_inverted_index.relies | 70 |
| abstract_inverted_index.solely | 69 |
| abstract_inverted_index.study, | 41 |
| abstract_inverted_index.within | 171 |
| abstract_inverted_index.(IINI), | 67 |
| abstract_inverted_index.Results | 134 |
| abstract_inverted_index.broader | 165 |
| abstract_inverted_index.compare | 120 |
| abstract_inverted_index.develop | 54 |
| abstract_inverted_index.diverse | 1 |
| abstract_inverted_index.exploit | 43 |
| abstract_inverted_index.further | 119 |
| abstract_inverted_index.locally | 47 |
| abstract_inverted_index.method, | 80 |
| abstract_inverted_index.methods | 23, 127 |
| abstract_inverted_index.minimum | 130 |
| abstract_inverted_index.physics | 52, 169 |
| abstract_inverted_index.simpler | 152 |
| abstract_inverted_index.spatial | 26 |
| abstract_inverted_index.surface | 132 |
| abstract_inverted_index.systems | 49 |
| abstract_inverted_index.various | 25 |
| abstract_inverted_index.Kriging, | 7 |
| abstract_inverted_index.airborne | 112, 115 |
| abstract_inverted_index.concepts | 170 |
| abstract_inverted_index.fitting. | 133 |
| abstract_inverted_index.function | 13 |
| abstract_inverted_index.gravity, | 111 |
| abstract_inverted_index.magnetic | 113 |
| abstract_inverted_index.methods, | 5 |
| abstract_inverted_index.methods. | 185 |
| abstract_inverted_index.observed | 30 |
| abstract_inverted_index.Immediate | 64 |
| abstract_inverted_index.Neighbour | 65 |
| abstract_inverted_index.accuracy, | 148 |
| abstract_inverted_index.curvature | 9, 131 |
| abstract_inverted_index.datasets. | 117 |
| abstract_inverted_index.framework | 57 |
| abstract_inverted_index.immediate | 74 |
| abstract_inverted_index.including | 6 |
| abstract_inverted_index.neighbour | 75 |
| abstract_inverted_index.numerical | 59 |
| abstract_inverted_index.potential | 178 |
| abstract_inverted_index.spatially | 18 |
| abstract_inverted_index.strengths | 99 |
| abstract_inverted_index.behaviour. | 38 |
| abstract_inverted_index.centroids. | 93 |
| abstract_inverted_index.collective | 88 |
| abstract_inverted_index.complexity | 157 |
| abstract_inverted_index.incomplete | 19 |
| abstract_inverted_index.properties | 27 |
| abstract_inverted_index.techniques | 143 |
| abstract_inverted_index.validation | 147 |
| abstract_inverted_index.Interacting | 63 |
| abstract_inverted_index.algorithmic | 156 |
| abstract_inverted_index.competitive | 139 |
| abstract_inverted_index.constructed | 85 |
| abstract_inverted_index.demonstrate | 95 |
| abstract_inverted_index.interacting | 48 |
| abstract_inverted_index.methodology | 105 |
| abstract_inverted_index.performance | 122 |
| abstract_inverted_index.radiometric | 116 |
| abstract_inverted_index.statistical | 51, 168 |
| abstract_inverted_index.traditional | 183 |
| abstract_inverted_index.adaptability | 45 |
| abstract_inverted_index.conventional | 126, 141 |
| abstract_inverted_index.correlations | 83 |
| abstract_inverted_index.demonstrates | 163 |
| abstract_inverted_index.highlighting | 176 |
| abstract_inverted_index.interactions | 90 |
| abstract_inverted_index.Interpolation | 66 |
| abstract_inverted_index.applicability | 166 |
| abstract_inverted_index.correlations. | 76 |
| abstract_inverted_index.functionality | 97 |
| abstract_inverted_index.geoscientific | 20, 60 |
| abstract_inverted_index.interpolating | 17 |
| abstract_inverted_index.interpolation | 4, 14, 56, 108, 142 |
| abstract_inverted_index.requirements. | 161 |
| abstract_inverted_index.significantly | 151 |
| abstract_inverted_index.geostatistical | 184 |
| abstract_inverted_index.geostatistics, | 175 |
| abstract_inverted_index.medium-to-long | 81 |
| abstract_inverted_index.pre-processing | 160 |
| abstract_inverted_index.spline/minimum | 8 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 3 |
| citation_normalized_percentile |