Interacting Particle Systems on Networks: joint inference of the network and the interaction kernel Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2402.08412
Modeling multi-agent systems on networks is a fundamental challenge in a wide variety of disciplines. We jointly infer the weight matrix of the network and the interaction kernel, which determine respectively which agents interact with which others and the rules of such interactions from data consisting of multiple trajectories. The estimator we propose leads naturally to a non-convex optimization problem, and we investigate two approaches for its solution: one is based on the alternating least squares (ALS) algorithm; another is based on a new algorithm named operator regression with alternating least squares (ORALS). Both algorithms are scalable to large ensembles of data trajectories. We establish coercivity conditions guaranteeing identifiability and well-posedness. The ALS algorithm appears statistically efficient and robust even in the small data regime but lacks performance and convergence guarantees. The ORALS estimator is consistent and asymptotically normal under a coercivity condition. We conduct several numerical experiments ranging from Kuramoto particle systems on networks to opinion dynamics in leader-follower models.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2402.08412
- https://arxiv.org/pdf/2402.08412
- OA Status
- green
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4391833846
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4391833846Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2402.08412Digital Object Identifier
- Title
-
Interacting Particle Systems on Networks: joint inference of the network and the interaction kernelWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-02-13Full publication date if available
- Authors
-
Quanjun Lang, Xiong Wang, Fei Lu, Mauro MaggioniList of authors in order
- Landing page
-
https://arxiv.org/abs/2402.08412Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2402.08412Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2402.08412Direct OA link when available
- Concepts
-
Inference, Kernel (algebra), Computer science, Joint (building), Particle (ecology), Particle system, Theoretical computer science, Artificial intelligence, Mathematics, Discrete mathematics, Engineering, Geology, Oceanography, Architectural engineering, Operating systemTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4391833846 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2402.08412 |
| ids.doi | https://doi.org/10.48550/arxiv.2402.08412 |
| ids.openalex | https://openalex.org/W4391833846 |
| fwci | |
| type | preprint |
| title | Interacting Particle Systems on Networks: joint inference of the network and the interaction kernel |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10064 |
| topics[0].field.id | https://openalex.org/fields/31 |
| topics[0].field.display_name | Physics and Astronomy |
| topics[0].score | 0.9154999852180481 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/3109 |
| topics[0].subfield.display_name | Statistical and Nonlinear Physics |
| topics[0].display_name | Complex Network Analysis Techniques |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C2776214188 |
| concepts[0].level | 2 |
| concepts[0].score | 0.6702966094017029 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q408386 |
| concepts[0].display_name | Inference |
| concepts[1].id | https://openalex.org/C74193536 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6206469535827637 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q574844 |
| concepts[1].display_name | Kernel (algebra) |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.5600816011428833 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| concepts[3].id | https://openalex.org/C18555067 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5200400352478027 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q8375051 |
| concepts[3].display_name | Joint (building) |
| concepts[4].id | https://openalex.org/C2778517922 |
| concepts[4].level | 2 |
| concepts[4].score | 0.43341439962387085 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q7140482 |
| concepts[4].display_name | Particle (ecology) |
| concepts[5].id | https://openalex.org/C179003449 |
| concepts[5].level | 2 |
| concepts[5].score | 0.43040451407432556 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q1757458 |
| concepts[5].display_name | Particle system |
| concepts[6].id | https://openalex.org/C80444323 |
| concepts[6].level | 1 |
| concepts[6].score | 0.35591721534729004 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q2878974 |
| concepts[6].display_name | Theoretical computer science |
| concepts[7].id | https://openalex.org/C154945302 |
| concepts[7].level | 1 |
| concepts[7].score | 0.318752646446228 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[7].display_name | Artificial intelligence |
| concepts[8].id | https://openalex.org/C33923547 |
| concepts[8].level | 0 |
| concepts[8].score | 0.2649584114551544 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[8].display_name | Mathematics |
| concepts[9].id | https://openalex.org/C118615104 |
| concepts[9].level | 1 |
| concepts[9].score | 0.15181422233581543 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q121416 |
| concepts[9].display_name | Discrete mathematics |
| concepts[10].id | https://openalex.org/C127413603 |
| concepts[10].level | 0 |
| concepts[10].score | 0.1324392557144165 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q11023 |
| concepts[10].display_name | Engineering |
| concepts[11].id | https://openalex.org/C127313418 |
| concepts[11].level | 0 |
| concepts[11].score | 0.08111235499382019 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q1069 |
| concepts[11].display_name | Geology |
| concepts[12].id | https://openalex.org/C111368507 |
| concepts[12].level | 1 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q43518 |
| concepts[12].display_name | Oceanography |
| concepts[13].id | https://openalex.org/C170154142 |
| concepts[13].level | 1 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q150737 |
| concepts[13].display_name | Architectural engineering |
| concepts[14].id | https://openalex.org/C111919701 |
| concepts[14].level | 1 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q9135 |
| concepts[14].display_name | Operating system |
| keywords[0].id | https://openalex.org/keywords/inference |
| keywords[0].score | 0.6702966094017029 |
| keywords[0].display_name | Inference |
| keywords[1].id | https://openalex.org/keywords/kernel |
| keywords[1].score | 0.6206469535827637 |
| keywords[1].display_name | Kernel (algebra) |
| keywords[2].id | https://openalex.org/keywords/computer-science |
| keywords[2].score | 0.5600816011428833 |
| keywords[2].display_name | Computer science |
| keywords[3].id | https://openalex.org/keywords/joint |
| keywords[3].score | 0.5200400352478027 |
| keywords[3].display_name | Joint (building) |
| keywords[4].id | https://openalex.org/keywords/particle |
| keywords[4].score | 0.43341439962387085 |
| keywords[4].display_name | Particle (ecology) |
| keywords[5].id | https://openalex.org/keywords/particle-system |
| keywords[5].score | 0.43040451407432556 |
| keywords[5].display_name | Particle system |
| keywords[6].id | https://openalex.org/keywords/theoretical-computer-science |
| keywords[6].score | 0.35591721534729004 |
| keywords[6].display_name | Theoretical computer science |
| keywords[7].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[7].score | 0.318752646446228 |
| keywords[7].display_name | Artificial intelligence |
| keywords[8].id | https://openalex.org/keywords/mathematics |
| keywords[8].score | 0.2649584114551544 |
| keywords[8].display_name | Mathematics |
| keywords[9].id | https://openalex.org/keywords/discrete-mathematics |
| keywords[9].score | 0.15181422233581543 |
| keywords[9].display_name | Discrete mathematics |
| keywords[10].id | https://openalex.org/keywords/engineering |
| keywords[10].score | 0.1324392557144165 |
| keywords[10].display_name | Engineering |
| keywords[11].id | https://openalex.org/keywords/geology |
| keywords[11].score | 0.08111235499382019 |
| keywords[11].display_name | Geology |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2402.08412 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2402.08412 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2402.08412 |
| locations[1].id | doi:10.48550/arxiv.2402.08412 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2402.08412 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5031867616 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Quanjun Lang |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Lang, Quanjun |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5101923309 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-0666-1128 |
| authorships[1].author.display_name | Xiong Wang |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Wang, Xiong |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5070405591 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-6842-7922 |
| authorships[2].author.display_name | Fei Lu |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Lu, Fei |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5089371996 |
| authorships[3].author.orcid | https://orcid.org/0000-0003-3258-9297 |
| authorships[3].author.display_name | Mauro Maggioni |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Maggioni, Mauro |
| authorships[3].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2402.08412 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Interacting Particle Systems on Networks: joint inference of the network and the interaction kernel |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10064 |
| primary_topic.field.id | https://openalex.org/fields/31 |
| primary_topic.field.display_name | Physics and Astronomy |
| primary_topic.score | 0.9154999852180481 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/3109 |
| primary_topic.subfield.display_name | Statistical and Nonlinear Physics |
| primary_topic.display_name | Complex Network Analysis Techniques |
| related_works | https://openalex.org/W2055243143, https://openalex.org/W1996130883, https://openalex.org/W2748574964, https://openalex.org/W2888483922, https://openalex.org/W4321636575, https://openalex.org/W2357796999, https://openalex.org/W2367747139, https://openalex.org/W2045526782, https://openalex.org/W32628869, https://openalex.org/W2312544580 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2402.08412 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2402.08412 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2402.08412 |
| primary_location.id | pmh:oai:arXiv.org:2402.08412 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2402.08412 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2402.08412 |
| publication_date | 2024-02-13 |
| publication_year | 2024 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 6, 10, 56, 82, 140 |
| abstract_inverted_index.We | 15, 103, 143 |
| abstract_inverted_index.in | 9, 120, 158 |
| abstract_inverted_index.is | 5, 69, 79, 134 |
| abstract_inverted_index.of | 13, 21, 40, 46, 100 |
| abstract_inverted_index.on | 3, 71, 81, 153 |
| abstract_inverted_index.to | 55, 97, 155 |
| abstract_inverted_index.we | 51, 61 |
| abstract_inverted_index.ALS | 112 |
| abstract_inverted_index.The | 49, 111, 131 |
| abstract_inverted_index.and | 24, 37, 60, 109, 117, 128, 136 |
| abstract_inverted_index.are | 95 |
| abstract_inverted_index.but | 125 |
| abstract_inverted_index.for | 65 |
| abstract_inverted_index.its | 66 |
| abstract_inverted_index.new | 83 |
| abstract_inverted_index.one | 68 |
| abstract_inverted_index.the | 18, 22, 25, 38, 72, 121 |
| abstract_inverted_index.two | 63 |
| abstract_inverted_index.Both | 93 |
| abstract_inverted_index.data | 44, 101, 123 |
| abstract_inverted_index.even | 119 |
| abstract_inverted_index.from | 43, 149 |
| abstract_inverted_index.such | 41 |
| abstract_inverted_index.wide | 11 |
| abstract_inverted_index.with | 34, 88 |
| abstract_inverted_index.(ALS) | 76 |
| abstract_inverted_index.ORALS | 132 |
| abstract_inverted_index.based | 70, 80 |
| abstract_inverted_index.infer | 17 |
| abstract_inverted_index.lacks | 126 |
| abstract_inverted_index.large | 98 |
| abstract_inverted_index.leads | 53 |
| abstract_inverted_index.least | 74, 90 |
| abstract_inverted_index.named | 85 |
| abstract_inverted_index.rules | 39 |
| abstract_inverted_index.small | 122 |
| abstract_inverted_index.under | 139 |
| abstract_inverted_index.which | 28, 31, 35 |
| abstract_inverted_index.agents | 32 |
| abstract_inverted_index.matrix | 20 |
| abstract_inverted_index.normal | 138 |
| abstract_inverted_index.others | 36 |
| abstract_inverted_index.regime | 124 |
| abstract_inverted_index.robust | 118 |
| abstract_inverted_index.weight | 19 |
| abstract_inverted_index.another | 78 |
| abstract_inverted_index.appears | 114 |
| abstract_inverted_index.conduct | 144 |
| abstract_inverted_index.jointly | 16 |
| abstract_inverted_index.kernel, | 27 |
| abstract_inverted_index.models. | 160 |
| abstract_inverted_index.network | 23 |
| abstract_inverted_index.opinion | 156 |
| abstract_inverted_index.propose | 52 |
| abstract_inverted_index.ranging | 148 |
| abstract_inverted_index.several | 145 |
| abstract_inverted_index.squares | 75, 91 |
| abstract_inverted_index.systems | 2, 152 |
| abstract_inverted_index.variety | 12 |
| abstract_inverted_index.(ORALS). | 92 |
| abstract_inverted_index.Kuramoto | 150 |
| abstract_inverted_index.Modeling | 0 |
| abstract_inverted_index.dynamics | 157 |
| abstract_inverted_index.interact | 33 |
| abstract_inverted_index.multiple | 47 |
| abstract_inverted_index.networks | 4, 154 |
| abstract_inverted_index.operator | 86 |
| abstract_inverted_index.particle | 151 |
| abstract_inverted_index.problem, | 59 |
| abstract_inverted_index.scalable | 96 |
| abstract_inverted_index.algorithm | 84, 113 |
| abstract_inverted_index.challenge | 8 |
| abstract_inverted_index.determine | 29 |
| abstract_inverted_index.efficient | 116 |
| abstract_inverted_index.ensembles | 99 |
| abstract_inverted_index.establish | 104 |
| abstract_inverted_index.estimator | 50, 133 |
| abstract_inverted_index.naturally | 54 |
| abstract_inverted_index.numerical | 146 |
| abstract_inverted_index.solution: | 67 |
| abstract_inverted_index.algorithm; | 77 |
| abstract_inverted_index.algorithms | 94 |
| abstract_inverted_index.approaches | 64 |
| abstract_inverted_index.coercivity | 105, 141 |
| abstract_inverted_index.condition. | 142 |
| abstract_inverted_index.conditions | 106 |
| abstract_inverted_index.consistent | 135 |
| abstract_inverted_index.consisting | 45 |
| abstract_inverted_index.non-convex | 57 |
| abstract_inverted_index.regression | 87 |
| abstract_inverted_index.alternating | 73, 89 |
| abstract_inverted_index.convergence | 129 |
| abstract_inverted_index.experiments | 147 |
| abstract_inverted_index.fundamental | 7 |
| abstract_inverted_index.guarantees. | 130 |
| abstract_inverted_index.interaction | 26 |
| abstract_inverted_index.investigate | 62 |
| abstract_inverted_index.multi-agent | 1 |
| abstract_inverted_index.performance | 127 |
| abstract_inverted_index.disciplines. | 14 |
| abstract_inverted_index.guaranteeing | 107 |
| abstract_inverted_index.interactions | 42 |
| abstract_inverted_index.optimization | 58 |
| abstract_inverted_index.respectively | 30 |
| abstract_inverted_index.statistically | 115 |
| abstract_inverted_index.trajectories. | 48, 102 |
| abstract_inverted_index.asymptotically | 137 |
| abstract_inverted_index.identifiability | 108 |
| abstract_inverted_index.leader-follower | 159 |
| abstract_inverted_index.well-posedness. | 110 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 4 |
| citation_normalized_percentile |