Interactive evolution and exploration within latent level-design space of generative adversarial networks Article Swipe
YOU?
·
· 2020
· Open Access
·
· DOI: https://doi.org/10.1145/3377930.3389821
Generative Adversarial Networks (GANs) are an emerging form of indirect encoding. The GAN is trained to induce a latent space on training data, and a real-valued evolutionary algorithm can search that latent space. Such Latent Variable Evolution (LVE) has recently been applied to game levels. However, it is hard for objective scores to capture level features that are appealing to players. Therefore, this paper introduces a tool for interactive LVE of tile-based levels for games. The tool also allows for direct exploration of the latent dimensions, and allows users to play discovered levels. The tool works for a variety of GAN models trained for both Super Mario Bros. and The Legend of Zelda, and is easily generalizable to other games. A user study shows that both the evolution and latent space exploration features are appreciated, with a slight preference for direct exploration, but combining these features allows users to discover even better levels. User feedback also indicates how this system could eventually grow into a commercial design tool, with the addition of a few enhancements.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- https://doi.org/10.1145/3377930.3389821
- OA Status
- green
- Cited By
- 8
- References
- 46
- Related Works
- 20
- OpenAlex ID
- https://openalex.org/W3014144626
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W3014144626Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1145/3377930.3389821Digital Object Identifier
- Title
-
Interactive evolution and exploration within latent level-design space of generative adversarial networksWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2020Year of publication
- Publication date
-
2020-06-25Full publication date if available
- Authors
-
Jacob Schrum, Jake Gutierrez, Vanessa Volz, Jialin Liu, Simon M. Lucas, Sebastian RisiList of authors in order
- Landing page
-
https://doi.org/10.1145/3377930.3389821Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2004.00151.pdfDirect OA link when available
- Concepts
-
Generative grammar, Computer science, Space (punctuation), Adversarial system, Variety (cybernetics), Encoding (memory), Machine learning, Artificial intelligence, Human–computer interaction, Preference, Mathematics, Statistics, Operating systemTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
8Total citation count in OpenAlex
- Citations by year (recent)
-
2023: 1, 2022: 2, 2021: 1, 2020: 4Per-year citation counts (last 5 years)
- References (count)
-
46Number of works referenced by this work
- Related works (count)
-
20Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W3014144626 |
|---|---|
| doi | https://doi.org/10.1145/3377930.3389821 |
| ids.doi | https://doi.org/10.1145/3377930.3389821 |
| ids.mag | 3014144626 |
| ids.openalex | https://openalex.org/W3014144626 |
| fwci | 1.17487639 |
| type | preprint |
| title | Interactive evolution and exploration within latent level-design space of generative adversarial networks |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | 156 |
| biblio.first_page | 148 |
| topics[0].id | https://openalex.org/T11574 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9993000030517578 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Artificial Intelligence in Games |
| topics[1].id | https://openalex.org/T11439 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.995199978351593 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1707 |
| topics[1].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[1].display_name | Video Analysis and Summarization |
| topics[2].id | https://openalex.org/T10775 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9948999881744385 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1707 |
| topics[2].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[2].display_name | Generative Adversarial Networks and Image Synthesis |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C39890363 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7415390014648438 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q36108 |
| concepts[0].display_name | Generative grammar |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.6858105063438416 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C2778572836 |
| concepts[2].level | 2 |
| concepts[2].score | 0.631650447845459 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q380933 |
| concepts[2].display_name | Space (punctuation) |
| concepts[3].id | https://openalex.org/C37736160 |
| concepts[3].level | 2 |
| concepts[3].score | 0.566012442111969 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q1801315 |
| concepts[3].display_name | Adversarial system |
| concepts[4].id | https://openalex.org/C136197465 |
| concepts[4].level | 2 |
| concepts[4].score | 0.540675163269043 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q1729295 |
| concepts[4].display_name | Variety (cybernetics) |
| concepts[5].id | https://openalex.org/C125411270 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5155184268951416 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q18653 |
| concepts[5].display_name | Encoding (memory) |
| concepts[6].id | https://openalex.org/C119857082 |
| concepts[6].level | 1 |
| concepts[6].score | 0.5113837122917175 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[6].display_name | Machine learning |
| concepts[7].id | https://openalex.org/C154945302 |
| concepts[7].level | 1 |
| concepts[7].score | 0.46159812808036804 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[7].display_name | Artificial intelligence |
| concepts[8].id | https://openalex.org/C107457646 |
| concepts[8].level | 1 |
| concepts[8].score | 0.45710453391075134 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q207434 |
| concepts[8].display_name | Human–computer interaction |
| concepts[9].id | https://openalex.org/C2781249084 |
| concepts[9].level | 2 |
| concepts[9].score | 0.4209514856338501 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q908656 |
| concepts[9].display_name | Preference |
| concepts[10].id | https://openalex.org/C33923547 |
| concepts[10].level | 0 |
| concepts[10].score | 0.09377977252006531 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[10].display_name | Mathematics |
| concepts[11].id | https://openalex.org/C105795698 |
| concepts[11].level | 1 |
| concepts[11].score | 0.0 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[11].display_name | Statistics |
| concepts[12].id | https://openalex.org/C111919701 |
| concepts[12].level | 1 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q9135 |
| concepts[12].display_name | Operating system |
| keywords[0].id | https://openalex.org/keywords/generative-grammar |
| keywords[0].score | 0.7415390014648438 |
| keywords[0].display_name | Generative grammar |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.6858105063438416 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/space |
| keywords[2].score | 0.631650447845459 |
| keywords[2].display_name | Space (punctuation) |
| keywords[3].id | https://openalex.org/keywords/adversarial-system |
| keywords[3].score | 0.566012442111969 |
| keywords[3].display_name | Adversarial system |
| keywords[4].id | https://openalex.org/keywords/variety |
| keywords[4].score | 0.540675163269043 |
| keywords[4].display_name | Variety (cybernetics) |
| keywords[5].id | https://openalex.org/keywords/encoding |
| keywords[5].score | 0.5155184268951416 |
| keywords[5].display_name | Encoding (memory) |
| keywords[6].id | https://openalex.org/keywords/machine-learning |
| keywords[6].score | 0.5113837122917175 |
| keywords[6].display_name | Machine learning |
| keywords[7].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[7].score | 0.46159812808036804 |
| keywords[7].display_name | Artificial intelligence |
| keywords[8].id | https://openalex.org/keywords/human–computer-interaction |
| keywords[8].score | 0.45710453391075134 |
| keywords[8].display_name | Human–computer interaction |
| keywords[9].id | https://openalex.org/keywords/preference |
| keywords[9].score | 0.4209514856338501 |
| keywords[9].display_name | Preference |
| keywords[10].id | https://openalex.org/keywords/mathematics |
| keywords[10].score | 0.09377977252006531 |
| keywords[10].display_name | Mathematics |
| language | en |
| locations[0].id | doi:10.1145/3377930.3389821 |
| locations[0].is_oa | False |
| locations[0].source | |
| locations[0].license | |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | proceedings-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Proceedings of the 2020 Genetic and Evolutionary Computation Conference |
| locations[0].landing_page_url | https://doi.org/10.1145/3377930.3389821 |
| locations[1].id | mag:3014144626 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | arXiv (Cornell University) |
| locations[1].landing_page_url | https://arxiv.org/pdf/2004.00151.pdf |
| locations[2].id | pmh:oai:pure.atira.dk:publications/0bcbd5f6-043a-4b6c-9926-47185e129cb1 |
| locations[2].is_oa | False |
| locations[2].source.id | https://openalex.org/S4306400216 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | Research Portal (King's College London) |
| locations[2].source.host_organization | https://openalex.org/I183935753 |
| locations[2].source.host_organization_name | King's College London |
| locations[2].source.host_organization_lineage | https://openalex.org/I183935753 |
| locations[2].license | |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | contributionToPeriodical |
| locations[2].license_id | |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | Schrum, J, Gutierrez, J, Volz, V, Liu, J, Lucas, S & Risi, S 2020, Interactive Evolution and Exploration within Latent Level-Design Space of Generative Adversarial Networks. in Proceedings of the 2020 Genetic and Evolutionary Computation Conference. Association for Computing Machinery, New York, NY, USA, pp. 148–156. https://doi.org/10.1145/3377930.3389821 |
| locations[2].landing_page_url | https://pure.itu.dk/portal/da/publications/0bcbd5f6-043a-4b6c-9926-47185e129cb1 |
| locations[3].id | doi:10.48550/arxiv.2004.00151 |
| locations[3].is_oa | True |
| locations[3].source.id | https://openalex.org/S4306400194 |
| locations[3].source.issn | |
| locations[3].source.type | repository |
| locations[3].source.is_oa | True |
| locations[3].source.issn_l | |
| locations[3].source.is_core | False |
| locations[3].source.is_in_doaj | False |
| locations[3].source.display_name | arXiv (Cornell University) |
| locations[3].source.host_organization | https://openalex.org/I205783295 |
| locations[3].source.host_organization_name | Cornell University |
| locations[3].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[3].license | |
| locations[3].pdf_url | |
| locations[3].version | |
| locations[3].raw_type | article |
| locations[3].license_id | |
| locations[3].is_accepted | False |
| locations[3].is_published | |
| locations[3].raw_source_name | |
| locations[3].landing_page_url | https://doi.org/10.48550/arxiv.2004.00151 |
| indexed_in | crossref, datacite |
| authorships[0].author.id | https://openalex.org/A5078279091 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-7315-0515 |
| authorships[0].author.display_name | Jacob Schrum |
| authorships[0].countries | US |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I8616870 |
| authorships[0].affiliations[0].raw_affiliation_string | Southwestern Univ |
| authorships[0].institutions[0].id | https://openalex.org/I8616870 |
| authorships[0].institutions[0].ror | https://ror.org/05gj63w50 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I8616870 |
| authorships[0].institutions[0].country_code | US |
| authorships[0].institutions[0].display_name | Southwestern University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Jacob Schrum |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Southwestern Univ |
| authorships[1].author.id | https://openalex.org/A5025760725 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Jake Gutierrez |
| authorships[1].countries | US |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I8616870 |
| authorships[1].affiliations[0].raw_affiliation_string | Southwestern Univ |
| authorships[1].institutions[0].id | https://openalex.org/I8616870 |
| authorships[1].institutions[0].ror | https://ror.org/05gj63w50 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I8616870 |
| authorships[1].institutions[0].country_code | US |
| authorships[1].institutions[0].display_name | Southwestern University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Jake Gutierrez |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Southwestern Univ |
| authorships[2].author.id | https://openalex.org/A5041698869 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-4919-4374 |
| authorships[2].author.display_name | Vanessa Volz |
| authorships[2].countries | DK |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I2803050950 |
| authorships[2].affiliations[0].raw_affiliation_string | modl.ai, Copenhagen, Denmark |
| authorships[2].institutions[0].id | https://openalex.org/I2803050950 |
| authorships[2].institutions[0].ror | https://ror.org/02ncgfj77 |
| authorships[2].institutions[0].type | government |
| authorships[2].institutions[0].lineage | https://openalex.org/I2803050950 |
| authorships[2].institutions[0].country_code | DK |
| authorships[2].institutions[0].display_name | Danish Ministry of Defence |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Vanessa Volz |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | modl.ai, Copenhagen, Denmark |
| authorships[3].author.id | https://openalex.org/A5100456636 |
| authorships[3].author.orcid | https://orcid.org/0000-0001-7047-8454 |
| authorships[3].author.display_name | Jialin Liu |
| authorships[3].countries | CN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I3045169105 |
| authorships[3].affiliations[0].raw_affiliation_string | Southern University of Science and Technology, Shenzhen, China; |
| authorships[3].institutions[0].id | https://openalex.org/I3045169105 |
| authorships[3].institutions[0].ror | https://ror.org/049tv2d57 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I3045169105 |
| authorships[3].institutions[0].country_code | CN |
| authorships[3].institutions[0].display_name | Southern University of Science and Technology |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Jialin Liu |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Southern University of Science and Technology, Shenzhen, China; |
| authorships[4].author.id | https://openalex.org/A5062380176 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-3180-7451 |
| authorships[4].author.display_name | Simon M. Lucas |
| authorships[4].countries | GB |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I166337079 |
| authorships[4].affiliations[0].raw_affiliation_string | Queen Mary University of London,,,London,,UK |
| authorships[4].institutions[0].id | https://openalex.org/I166337079 |
| authorships[4].institutions[0].ror | https://ror.org/026zzn846 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I124357947, https://openalex.org/I166337079 |
| authorships[4].institutions[0].country_code | GB |
| authorships[4].institutions[0].display_name | Queen Mary University of London |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Simon Lucas |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Queen Mary University of London,,,London,,UK |
| authorships[5].author.id | https://openalex.org/A5020511097 |
| authorships[5].author.orcid | https://orcid.org/0000-0003-3607-8400 |
| authorships[5].author.display_name | Sebastian Risi |
| authorships[5].countries | DK |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I83467386 |
| authorships[5].affiliations[0].raw_affiliation_string | [IT University of Copenhagen, Copenhagen, Denmark] |
| authorships[5].institutions[0].id | https://openalex.org/I83467386 |
| authorships[5].institutions[0].ror | https://ror.org/02309jg23 |
| authorships[5].institutions[0].type | education |
| authorships[5].institutions[0].lineage | https://openalex.org/I83467386 |
| authorships[5].institutions[0].country_code | DK |
| authorships[5].institutions[0].display_name | IT University of Copenhagen |
| authorships[5].author_position | last |
| authorships[5].raw_author_name | Sebastian Risi |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | [IT University of Copenhagen, Copenhagen, Denmark] |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2004.00151.pdf |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Interactive evolution and exploration within latent level-design space of generative adversarial networks |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11574 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9993000030517578 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Artificial Intelligence in Games |
| related_works | https://openalex.org/W3038300925, https://openalex.org/W2798854895, https://openalex.org/W3094169176, https://openalex.org/W3130724084, https://openalex.org/W2991563701, https://openalex.org/W3109224353, https://openalex.org/W3204674984, https://openalex.org/W3093851578, https://openalex.org/W3153187842, https://openalex.org/W3025437133, https://openalex.org/W2618716072, https://openalex.org/W2605056129, https://openalex.org/W3169914016, https://openalex.org/W2799528510, https://openalex.org/W2889730849, https://openalex.org/W2951406201, https://openalex.org/W2963181909, https://openalex.org/W3189027360, https://openalex.org/W2953243993, https://openalex.org/W3001365517 |
| cited_by_count | 8 |
| counts_by_year[0].year | 2023 |
| counts_by_year[0].cited_by_count | 1 |
| counts_by_year[1].year | 2022 |
| counts_by_year[1].cited_by_count | 2 |
| counts_by_year[2].year | 2021 |
| counts_by_year[2].cited_by_count | 1 |
| counts_by_year[3].year | 2020 |
| counts_by_year[3].cited_by_count | 4 |
| locations_count | 4 |
| best_oa_location.id | mag:3014144626 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | arXiv (Cornell University) |
| best_oa_location.landing_page_url | https://arxiv.org/pdf/2004.00151.pdf |
| primary_location.id | doi:10.1145/3377930.3389821 |
| primary_location.is_oa | False |
| primary_location.source | |
| primary_location.license | |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | proceedings-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Proceedings of the 2020 Genetic and Evolutionary Computation Conference |
| primary_location.landing_page_url | https://doi.org/10.1145/3377930.3389821 |
| publication_date | 2020-06-25 |
| publication_year | 2020 |
| referenced_works | https://openalex.org/W2782555108, https://openalex.org/W2976037548, https://openalex.org/W225560312, https://openalex.org/W2020987898, https://openalex.org/W2228553444, https://openalex.org/W2975534577, https://openalex.org/W2601435252, https://openalex.org/W2035033474, https://openalex.org/W850812170, https://openalex.org/W2944678459, https://openalex.org/W2557449848, https://openalex.org/W1602946837, https://openalex.org/W2975641859, https://openalex.org/W2318590641, https://openalex.org/W2139898429, https://openalex.org/W2031734221, https://openalex.org/W2963690854, https://openalex.org/W2151019861, https://openalex.org/W2975116180, https://openalex.org/W2060020482, https://openalex.org/W2952437250, https://openalex.org/W2964201809, https://openalex.org/W2053153219, https://openalex.org/W1980681408, https://openalex.org/W2998542703, https://openalex.org/W2100170872, https://openalex.org/W2099471712, https://openalex.org/W2739748921, https://openalex.org/W2484993904, https://openalex.org/W2290393232, https://openalex.org/W2620366300, https://openalex.org/W2395774634, https://openalex.org/W2979077722, https://openalex.org/W2944956221, https://openalex.org/W2951140085, https://openalex.org/W2474605630, https://openalex.org/W2964011712, https://openalex.org/W2301459920, https://openalex.org/W3106433390, https://openalex.org/W3000654067, https://openalex.org/W2002558294, https://openalex.org/W2963684088, https://openalex.org/W3038022805, https://openalex.org/W2964372038, https://openalex.org/W2962879692, https://openalex.org/W2151083897 |
| referenced_works_count | 46 |
| abstract_inverted_index.A | 120 |
| abstract_inverted_index.a | 17, 24, 65, 97, 136, 164, 172 |
| abstract_inverted_index.an | 5 |
| abstract_inverted_index.is | 13, 47, 114 |
| abstract_inverted_index.it | 46 |
| abstract_inverted_index.of | 8, 70, 82, 99, 111, 171 |
| abstract_inverted_index.on | 20 |
| abstract_inverted_index.to | 15, 42, 52, 59, 89, 117, 148 |
| abstract_inverted_index.GAN | 12, 100 |
| abstract_inverted_index.LVE | 69 |
| abstract_inverted_index.The | 11, 75, 93, 109 |
| abstract_inverted_index.and | 23, 86, 108, 113, 128 |
| abstract_inverted_index.are | 4, 57, 133 |
| abstract_inverted_index.but | 142 |
| abstract_inverted_index.can | 28 |
| abstract_inverted_index.few | 173 |
| abstract_inverted_index.for | 49, 67, 73, 79, 96, 103, 139 |
| abstract_inverted_index.has | 38 |
| abstract_inverted_index.how | 157 |
| abstract_inverted_index.the | 83, 126, 169 |
| abstract_inverted_index.Such | 33 |
| abstract_inverted_index.User | 153 |
| abstract_inverted_index.also | 77, 155 |
| abstract_inverted_index.been | 40 |
| abstract_inverted_index.both | 104, 125 |
| abstract_inverted_index.even | 150 |
| abstract_inverted_index.form | 7 |
| abstract_inverted_index.game | 43 |
| abstract_inverted_index.grow | 162 |
| abstract_inverted_index.hard | 48 |
| abstract_inverted_index.into | 163 |
| abstract_inverted_index.play | 90 |
| abstract_inverted_index.that | 30, 56, 124 |
| abstract_inverted_index.this | 62, 158 |
| abstract_inverted_index.tool | 66, 76, 94 |
| abstract_inverted_index.user | 121 |
| abstract_inverted_index.with | 135, 168 |
| abstract_inverted_index.(LVE) | 37 |
| abstract_inverted_index.Bros. | 107 |
| abstract_inverted_index.Mario | 106 |
| abstract_inverted_index.Super | 105 |
| abstract_inverted_index.could | 160 |
| abstract_inverted_index.data, | 22 |
| abstract_inverted_index.level | 54 |
| abstract_inverted_index.other | 118 |
| abstract_inverted_index.paper | 63 |
| abstract_inverted_index.shows | 123 |
| abstract_inverted_index.space | 19, 130 |
| abstract_inverted_index.study | 122 |
| abstract_inverted_index.these | 144 |
| abstract_inverted_index.tool, | 167 |
| abstract_inverted_index.users | 88, 147 |
| abstract_inverted_index.works | 95 |
| abstract_inverted_index.(GANs) | 3 |
| abstract_inverted_index.Latent | 34 |
| abstract_inverted_index.Legend | 110 |
| abstract_inverted_index.Zelda, | 112 |
| abstract_inverted_index.allows | 78, 87, 146 |
| abstract_inverted_index.better | 151 |
| abstract_inverted_index.design | 166 |
| abstract_inverted_index.direct | 80, 140 |
| abstract_inverted_index.easily | 115 |
| abstract_inverted_index.games. | 74, 119 |
| abstract_inverted_index.induce | 16 |
| abstract_inverted_index.latent | 18, 31, 84, 129 |
| abstract_inverted_index.levels | 72 |
| abstract_inverted_index.models | 101 |
| abstract_inverted_index.scores | 51 |
| abstract_inverted_index.search | 29 |
| abstract_inverted_index.slight | 137 |
| abstract_inverted_index.space. | 32 |
| abstract_inverted_index.system | 159 |
| abstract_inverted_index.applied | 41 |
| abstract_inverted_index.capture | 53 |
| abstract_inverted_index.levels. | 44, 92, 152 |
| abstract_inverted_index.trained | 14, 102 |
| abstract_inverted_index.variety | 98 |
| abstract_inverted_index.However, | 45 |
| abstract_inverted_index.Networks | 2 |
| abstract_inverted_index.Variable | 35 |
| abstract_inverted_index.addition | 170 |
| abstract_inverted_index.discover | 149 |
| abstract_inverted_index.emerging | 6 |
| abstract_inverted_index.features | 55, 132, 145 |
| abstract_inverted_index.feedback | 154 |
| abstract_inverted_index.indirect | 9 |
| abstract_inverted_index.players. | 60 |
| abstract_inverted_index.recently | 39 |
| abstract_inverted_index.training | 21 |
| abstract_inverted_index.Evolution | 36 |
| abstract_inverted_index.algorithm | 27 |
| abstract_inverted_index.appealing | 58 |
| abstract_inverted_index.combining | 143 |
| abstract_inverted_index.encoding. | 10 |
| abstract_inverted_index.evolution | 127 |
| abstract_inverted_index.indicates | 156 |
| abstract_inverted_index.objective | 50 |
| abstract_inverted_index.Generative | 0 |
| abstract_inverted_index.Therefore, | 61 |
| abstract_inverted_index.commercial | 165 |
| abstract_inverted_index.discovered | 91 |
| abstract_inverted_index.eventually | 161 |
| abstract_inverted_index.introduces | 64 |
| abstract_inverted_index.preference | 138 |
| abstract_inverted_index.tile-based | 71 |
| abstract_inverted_index.Adversarial | 1 |
| abstract_inverted_index.dimensions, | 85 |
| abstract_inverted_index.exploration | 81, 131 |
| abstract_inverted_index.interactive | 68 |
| abstract_inverted_index.real-valued | 25 |
| abstract_inverted_index.appreciated, | 134 |
| abstract_inverted_index.evolutionary | 26 |
| abstract_inverted_index.exploration, | 141 |
| abstract_inverted_index.enhancements. | 174 |
| abstract_inverted_index.generalizable | 116 |
| cited_by_percentile_year.max | 97 |
| cited_by_percentile_year.min | 89 |
| countries_distinct_count | 4 |
| institutions_distinct_count | 6 |
| citation_normalized_percentile.value | 0.82155914 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |