InterAxNN: Reconfigurable and Approximate in-Memory Processing Accelerator for Ultra-Low-Power Binary Neural Network Inference in Intermittently Powered Systems Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.1145/3771845
In this work, we propose InterAxNN , an energy-aware approximate hardware architecture to perform vector-matrix multiplications in the binary precision regime for energy-constrained intermittently powered systems (IPS). In contrast to existing XNOR multiply-and-accumulate (MAC) operations implemented widely for binary neural networks (BNNs), we design a novel reconfigurable XNOR-MAC and AND-MAC memory macro to perform approximate binary precision operations, targeted for systems with extreme energy constraints. The proposed macro design is integrated with the ability to modify the MAC mode during run-time depending on instantaneous energy and power transients. We utilize the unique attributes of ferroelectric transistors (FeFETs) to implement the proposed ultra-low power BNN engine performing in-memory computing for artificial intelligence (AI) workloads. Subsequently, we leverage the quality configurable compute-in-memory-based hardware accelerator to implement InterAxNN based on a TI MSP430-based microcontroller. We evaluate the proposed InterAxNN concerning two baselines: (a) standard von Neumann computing architecture-based-microcontroller platform (MCU), and (b) MCU with a state-of-the-art low energy accelerator (MCU+LEA), and observe significant performance and energy benefits. Experimental results performed using a TI MSP430FR5379 IPS system show 448×–581× uplift in forward progress for 2%–8% accuracy loss for MNIST, 4%–5% accuracy loss for EMNIST, and 1%–4% reduction in accuracy for QMNIST, respectively, using MLP on a MCU+LEA platform with Unified NVM architecture. The AND-MAC mode in InterAxNN results in 91×–127× amount of additional forward progress over XNOR-MAC for 1%–2%, 4%–19%, and 1%–5% higher quality degradation for MNIST, EMNIST, and QMNIST, respectively.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1145/3771845
- OA Status
- hybrid
- References
- 68
- OpenAlex ID
- https://openalex.org/W4415104332
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4415104332Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1145/3771845Digital Object Identifier
- Title
-
InterAxNN: Reconfigurable and Approximate in-Memory Processing Accelerator for Ultra-Low-Power Binary Neural Network Inference in Intermittently Powered SystemsWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-10-13Full publication date if available
- Authors
-
Arnab Raha, Sandeep Krishna Thirumala, Sumeet Kumar Gupta, Vijay RaghunathanList of authors in order
- Landing page
-
https://doi.org/10.1145/3771845Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
hybridOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.1145/3771845Direct OA link when available
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
68Number of works referenced by this work
Full payload
| id | https://openalex.org/W4415104332 |
|---|---|
| doi | https://doi.org/10.1145/3771845 |
| ids.doi | https://doi.org/10.1145/3771845 |
| ids.openalex | https://openalex.org/W4415104332 |
| fwci | 0.0 |
| type | article |
| title | InterAxNN: Reconfigurable and Approximate in-Memory Processing Accelerator for Ultra-Low-Power Binary Neural Network Inference in Intermittently Powered Systems |
| biblio.issue | 1 |
| biblio.volume | 31 |
| biblio.last_page | 44 |
| biblio.first_page | 1 |
| topics[0].id | https://openalex.org/T10502 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 1.0 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2208 |
| topics[0].subfield.display_name | Electrical and Electronic Engineering |
| topics[0].display_name | Advanced Memory and Neural Computing |
| topics[1].id | https://openalex.org/T12808 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.9994999766349792 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2208 |
| topics[1].subfield.display_name | Electrical and Electronic Engineering |
| topics[1].display_name | Ferroelectric and Negative Capacitance Devices |
| topics[2].id | https://openalex.org/T10036 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9975000023841858 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1707 |
| topics[2].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[2].display_name | Advanced Neural Network Applications |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| language | en |
| locations[0].id | doi:10.1145/3771845 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S105046310 |
| locations[0].source.issn | 1084-4309, 1557-7309 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | 1084-4309 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | ACM Transactions on Design Automation of Electronic Systems |
| locations[0].source.host_organization | https://openalex.org/P4310319798 |
| locations[0].source.host_organization_name | Association for Computing Machinery |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310319798 |
| locations[0].source.host_organization_lineage_names | Association for Computing Machinery |
| locations[0].license | cc-by |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | ACM Transactions on Design Automation of Electronic Systems |
| locations[0].landing_page_url | https://doi.org/10.1145/3771845 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5066464351 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-8848-1069 |
| authorships[0].author.display_name | Arnab Raha |
| authorships[0].countries | US |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I1343180700 |
| authorships[0].affiliations[0].raw_affiliation_string | Intel Corporation, Santa Clara, United States |
| authorships[0].institutions[0].id | https://openalex.org/I1343180700 |
| authorships[0].institutions[0].ror | https://ror.org/01ek73717 |
| authorships[0].institutions[0].type | company |
| authorships[0].institutions[0].lineage | https://openalex.org/I1343180700 |
| authorships[0].institutions[0].country_code | US |
| authorships[0].institutions[0].display_name | Intel (United States) |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Arnab Raha |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Intel Corporation, Santa Clara, United States |
| authorships[1].author.id | https://openalex.org/A5043655176 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-9448-324X |
| authorships[1].author.display_name | Sandeep Krishna Thirumala |
| authorships[1].countries | US |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I11912373 |
| authorships[1].affiliations[0].raw_affiliation_string | Micron Technology Inc, Boise, United States |
| authorships[1].institutions[0].id | https://openalex.org/I11912373 |
| authorships[1].institutions[0].ror | https://ror.org/02fv52296 |
| authorships[1].institutions[0].type | company |
| authorships[1].institutions[0].lineage | https://openalex.org/I11912373 |
| authorships[1].institutions[0].country_code | US |
| authorships[1].institutions[0].display_name | Micron (United States) |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Sandeep Krishna Thirumala |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Micron Technology Inc, Boise, United States |
| authorships[2].author.id | https://openalex.org/A5044276472 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-5609-9722 |
| authorships[2].author.display_name | Sumeet Kumar Gupta |
| authorships[2].countries | US |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I219193219 |
| authorships[2].affiliations[0].raw_affiliation_string | Purdue University, West Lafayette, United States |
| authorships[2].institutions[0].id | https://openalex.org/I219193219 |
| authorships[2].institutions[0].ror | https://ror.org/02dqehb95 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I219193219 |
| authorships[2].institutions[0].country_code | US |
| authorships[2].institutions[0].display_name | Purdue University West Lafayette |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Sumeet Kumar Gupta |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Purdue University, West Lafayette, United States |
| authorships[3].author.id | https://openalex.org/A5102009759 |
| authorships[3].author.orcid | https://orcid.org/0000-0003-4713-5386 |
| authorships[3].author.display_name | Vijay Raghunathan |
| authorships[3].countries | US |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I219193219 |
| authorships[3].affiliations[0].raw_affiliation_string | Purdue University, West Lafayette, United States |
| authorships[3].institutions[0].id | https://openalex.org/I219193219 |
| authorships[3].institutions[0].ror | https://ror.org/02dqehb95 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I219193219 |
| authorships[3].institutions[0].country_code | US |
| authorships[3].institutions[0].display_name | Purdue University West Lafayette |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Vijay Raghunathan |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Purdue University, West Lafayette, United States |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.1145/3771845 |
| open_access.oa_status | hybrid |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-13T00:00:00 |
| display_name | InterAxNN: Reconfigurable and Approximate in-Memory Processing Accelerator for Ultra-Low-Power Binary Neural Network Inference in Intermittently Powered Systems |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-09T23:09:16.995542 |
| primary_topic.id | https://openalex.org/T10502 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 1.0 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2208 |
| primary_topic.subfield.display_name | Electrical and Electronic Engineering |
| primary_topic.display_name | Advanced Memory and Neural Computing |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.1145/3771845 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S105046310 |
| best_oa_location.source.issn | 1084-4309, 1557-7309 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | 1084-4309 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | ACM Transactions on Design Automation of Electronic Systems |
| best_oa_location.source.host_organization | https://openalex.org/P4310319798 |
| best_oa_location.source.host_organization_name | Association for Computing Machinery |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310319798 |
| best_oa_location.source.host_organization_lineage_names | Association for Computing Machinery |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | ACM Transactions on Design Automation of Electronic Systems |
| best_oa_location.landing_page_url | https://doi.org/10.1145/3771845 |
| primary_location.id | doi:10.1145/3771845 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S105046310 |
| primary_location.source.issn | 1084-4309, 1557-7309 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | 1084-4309 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | ACM Transactions on Design Automation of Electronic Systems |
| primary_location.source.host_organization | https://openalex.org/P4310319798 |
| primary_location.source.host_organization_name | Association for Computing Machinery |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310319798 |
| primary_location.source.host_organization_lineage_names | Association for Computing Machinery |
| primary_location.license | cc-by |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | ACM Transactions on Design Automation of Electronic Systems |
| primary_location.landing_page_url | https://doi.org/10.1145/3771845 |
| publication_date | 2025-10-13 |
| publication_year | 2025 |
| referenced_works | https://openalex.org/W4283708377, https://openalex.org/W3021304221, https://openalex.org/W4384436418, https://openalex.org/W3176381399, https://openalex.org/W4386918841, https://openalex.org/W2799043997, https://openalex.org/W2024335183, https://openalex.org/W2989523235, https://openalex.org/W2978448132, https://openalex.org/W2798654995, https://openalex.org/W2734358244, https://openalex.org/W4317927906, https://openalex.org/W2516459979, https://openalex.org/W4311453553, https://openalex.org/W4285331444, https://openalex.org/W4386071774, https://openalex.org/W4362473790, https://openalex.org/W4390913647, https://openalex.org/W4390577857, https://openalex.org/W2963122961, https://openalex.org/W2562308138, https://openalex.org/W2034151099, https://openalex.org/W1131252562, https://openalex.org/W2609357516, https://openalex.org/W2787453651, https://openalex.org/W4206710119, https://openalex.org/W3091175932, https://openalex.org/W4210278476, https://openalex.org/W4200393040, https://openalex.org/W2112796928, https://openalex.org/W4313478540, https://openalex.org/W4283817132, https://openalex.org/W2952429406, https://openalex.org/W3037354233, https://openalex.org/W2612839290, https://openalex.org/W4251871580, https://openalex.org/W3200382295, https://openalex.org/W4385216645, https://openalex.org/W4225755231, https://openalex.org/W3017282344, https://openalex.org/W3083149649, https://openalex.org/W4200346503, https://openalex.org/W2772111147, https://openalex.org/W2900227741, https://openalex.org/W2300242332, https://openalex.org/W2963446207, https://openalex.org/W2051108935, https://openalex.org/W4226400219, https://openalex.org/W3013080934, https://openalex.org/W4400229079, https://openalex.org/W4387492098, https://openalex.org/W3046920646, https://openalex.org/W3046549256, https://openalex.org/W2744369623, https://openalex.org/W2798554798, https://openalex.org/W2588666075, https://openalex.org/W3217124456, https://openalex.org/W2889527112, https://openalex.org/W3115938264, https://openalex.org/W4212816501, https://openalex.org/W3088772051, https://openalex.org/W3194966730, https://openalex.org/W4308477818, https://openalex.org/W3000301330, https://openalex.org/W2899868573, https://openalex.org/W2133724338, https://openalex.org/W2946086434, https://openalex.org/W2916854910 |
| referenced_works_count | 68 |
| abstract_inverted_index., | 6 |
| abstract_inverted_index.a | 44, 127, 151, 168, 201 |
| abstract_inverted_index.In | 0, 27 |
| abstract_inverted_index.TI | 128, 169 |
| abstract_inverted_index.We | 88, 131 |
| abstract_inverted_index.an | 7 |
| abstract_inverted_index.in | 16, 176, 193, 211, 214 |
| abstract_inverted_index.is | 69 |
| abstract_inverted_index.of | 93, 217 |
| abstract_inverted_index.on | 82, 126, 200 |
| abstract_inverted_index.to | 12, 29, 52, 74, 97, 122 |
| abstract_inverted_index.we | 3, 42, 114 |
| abstract_inverted_index.(a) | 139 |
| abstract_inverted_index.(b) | 148 |
| abstract_inverted_index.BNN | 103 |
| abstract_inverted_index.IPS | 171 |
| abstract_inverted_index.MAC | 77 |
| abstract_inverted_index.MCU | 149 |
| abstract_inverted_index.MLP | 199 |
| abstract_inverted_index.NVM | 206 |
| abstract_inverted_index.The | 65, 208 |
| abstract_inverted_index.and | 48, 85, 147, 157, 161, 190, 226, 234 |
| abstract_inverted_index.for | 21, 37, 59, 108, 179, 183, 188, 195, 223, 231 |
| abstract_inverted_index.low | 153 |
| abstract_inverted_index.the | 17, 72, 76, 90, 99, 116, 133 |
| abstract_inverted_index.two | 137 |
| abstract_inverted_index.von | 141 |
| abstract_inverted_index.(AI) | 111 |
| abstract_inverted_index.XNOR | 31 |
| abstract_inverted_index.loss | 182, 187 |
| abstract_inverted_index.mode | 78, 210 |
| abstract_inverted_index.over | 221 |
| abstract_inverted_index.show | 173 |
| abstract_inverted_index.this | 1 |
| abstract_inverted_index.with | 61, 71, 150, 204 |
| abstract_inverted_index.(MAC) | 33 |
| abstract_inverted_index.based | 125 |
| abstract_inverted_index.macro | 51, 67 |
| abstract_inverted_index.novel | 45 |
| abstract_inverted_index.power | 86, 102 |
| abstract_inverted_index.using | 167, 198 |
| abstract_inverted_index.work, | 2 |
| abstract_inverted_index.(IPS). | 26 |
| abstract_inverted_index.(MCU), | 146 |
| abstract_inverted_index.MNIST, | 184, 232 |
| abstract_inverted_index.amount | 216 |
| abstract_inverted_index.binary | 18, 38, 55 |
| abstract_inverted_index.design | 43, 68 |
| abstract_inverted_index.during | 79 |
| abstract_inverted_index.energy | 63, 84, 154, 162 |
| abstract_inverted_index.engine | 104 |
| abstract_inverted_index.higher | 228 |
| abstract_inverted_index.memory | 50 |
| abstract_inverted_index.modify | 75 |
| abstract_inverted_index.neural | 39 |
| abstract_inverted_index.regime | 20 |
| abstract_inverted_index.system | 172 |
| abstract_inverted_index.unique | 91 |
| abstract_inverted_index.uplift | 175 |
| abstract_inverted_index.widely | 36 |
| abstract_inverted_index.(BNNs), | 41 |
| abstract_inverted_index.1%–4% | 191 |
| abstract_inverted_index.1%–5% | 227 |
| abstract_inverted_index.2%–8% | 180 |
| abstract_inverted_index.4%–5% | 185 |
| abstract_inverted_index.AND-MAC | 49, 209 |
| abstract_inverted_index.EMNIST, | 189, 233 |
| abstract_inverted_index.MCU+LEA | 202 |
| abstract_inverted_index.Neumann | 142 |
| abstract_inverted_index.QMNIST, | 196, 235 |
| abstract_inverted_index.Unified | 205 |
| abstract_inverted_index.ability | 73 |
| abstract_inverted_index.extreme | 62 |
| abstract_inverted_index.forward | 177, 219 |
| abstract_inverted_index.observe | 158 |
| abstract_inverted_index.perform | 13, 53 |
| abstract_inverted_index.powered | 24 |
| abstract_inverted_index.propose | 4 |
| abstract_inverted_index.quality | 117, 229 |
| abstract_inverted_index.results | 165, 213 |
| abstract_inverted_index.systems | 25, 60 |
| abstract_inverted_index.utilize | 89 |
| abstract_inverted_index.(FeFETs) | 96 |
| abstract_inverted_index.1%–2%, | 224 |
| abstract_inverted_index.XNOR-MAC | 47, 222 |
| abstract_inverted_index.accuracy | 181, 186, 194 |
| abstract_inverted_index.contrast | 28 |
| abstract_inverted_index.evaluate | 132 |
| abstract_inverted_index.existing | 30 |
| abstract_inverted_index.hardware | 10, 120 |
| abstract_inverted_index.leverage | 115 |
| abstract_inverted_index.networks | 40 |
| abstract_inverted_index.platform | 145, 203 |
| abstract_inverted_index.progress | 178, 220 |
| abstract_inverted_index.proposed | 66, 100, 134 |
| abstract_inverted_index.run-time | 80 |
| abstract_inverted_index.standard | 140 |
| abstract_inverted_index.targeted | 58 |
| abstract_inverted_index.4%–19%, | 225 |
| abstract_inverted_index.InterAxNN | 5, 124, 135, 212 |
| abstract_inverted_index.benefits. | 163 |
| abstract_inverted_index.computing | 107, 143 |
| abstract_inverted_index.depending | 81 |
| abstract_inverted_index.implement | 98, 123 |
| abstract_inverted_index.in-memory | 106 |
| abstract_inverted_index.performed | 166 |
| abstract_inverted_index.precision | 19, 56 |
| abstract_inverted_index.reduction | 192 |
| abstract_inverted_index.ultra-low | 101 |
| abstract_inverted_index.(MCU+LEA), | 156 |
| abstract_inverted_index.additional | 218 |
| abstract_inverted_index.artificial | 109 |
| abstract_inverted_index.attributes | 92 |
| abstract_inverted_index.baselines: | 138 |
| abstract_inverted_index.concerning | 136 |
| abstract_inverted_index.integrated | 70 |
| abstract_inverted_index.operations | 34 |
| abstract_inverted_index.performing | 105 |
| abstract_inverted_index.workloads. | 112 |
| abstract_inverted_index.accelerator | 121, 155 |
| abstract_inverted_index.approximate | 9, 54 |
| abstract_inverted_index.degradation | 230 |
| abstract_inverted_index.implemented | 35 |
| abstract_inverted_index.operations, | 57 |
| abstract_inverted_index.performance | 160 |
| abstract_inverted_index.significant | 159 |
| abstract_inverted_index.transients. | 87 |
| abstract_inverted_index.transistors | 95 |
| abstract_inverted_index.91×–127× | 215 |
| abstract_inverted_index.Experimental | 164 |
| abstract_inverted_index.MSP430-based | 129 |
| abstract_inverted_index.MSP430FR5379 | 170 |
| abstract_inverted_index.architecture | 11 |
| abstract_inverted_index.configurable | 118 |
| abstract_inverted_index.constraints. | 64 |
| abstract_inverted_index.energy-aware | 8 |
| abstract_inverted_index.intelligence | 110 |
| abstract_inverted_index.448×–581× | 174 |
| abstract_inverted_index.Subsequently, | 113 |
| abstract_inverted_index.architecture. | 207 |
| abstract_inverted_index.ferroelectric | 94 |
| abstract_inverted_index.instantaneous | 83 |
| abstract_inverted_index.respectively, | 197 |
| abstract_inverted_index.respectively. | 236 |
| abstract_inverted_index.vector-matrix | 14 |
| abstract_inverted_index.intermittently | 23 |
| abstract_inverted_index.reconfigurable | 46 |
| abstract_inverted_index.multiplications | 15 |
| abstract_inverted_index.microcontroller. | 130 |
| abstract_inverted_index.state-of-the-art | 152 |
| abstract_inverted_index.energy-constrained | 22 |
| abstract_inverted_index.compute-in-memory-based | 119 |
| abstract_inverted_index.multiply-and-accumulate | 32 |
| abstract_inverted_index.architecture-based-microcontroller | 144 |
| cited_by_percentile_year | |
| countries_distinct_count | 1 |
| institutions_distinct_count | 4 |
| citation_normalized_percentile.value | 0.54336283 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |