Internet addiction disorder detection of Chinese college students using several personality questionnaire data and support vector machine Article Swipe
YOU?
·
· 2019
· Open Access
·
· DOI: https://doi.org/10.1016/j.abrep.2019.100200
With the unprecedented development of the Internet, it also brings the challenge of Internet Addiction (IA), which is hard to diagnose and cure according to the state-of-art research. In this study, we explored the feasibility of machine learning methods to detect IA. We acquired a dataset consisting of 2397 Chinese college students from the University (Age: 19.17 ± 0.70, Male: 64.17%) who completed Brief Self Control Scale (BSCS), the 11th version of Barratt Impulsiveness Scale (BIS-11), Chinese Big Five Personality Inventory (CBF-PI) and Chen Internet Addiction Scale (CIAS), where CBF-PI includes five sub-features (Openness, Extraversion, Conscientiousness, Agreeableness, and Neuroticism) and BSCS includes three sub-features (Attention, Motor and Non-planning). We applied Student's t-test on the dataset for feature selection and Support Vector Machines (SVMs) including C-SVM and ν-SVM with grid search for the classification and parameters optimization. This work illustrates that SVM is a reliable method for the assessment of IA and questionnaire data analysis. The best detection performance of IA is 96.32% which was obtained by C-SVM in the 6-feature dataset without normalization. Finally, the BIS-11, BSCS, Motor, Neuroticism, Non-planning, and Conscientiousness are shown to be promising features for the detection of IA.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1016/j.abrep.2019.100200
- OA Status
- gold
- Cited By
- 42
- References
- 105
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W2959528333
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W2959528333Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1016/j.abrep.2019.100200Digital Object Identifier
- Title
-
Internet addiction disorder detection of Chinese college students using several personality questionnaire data and support vector machineWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2019Year of publication
- Publication date
-
2019-07-11Full publication date if available
- Authors
-
Zonglin Di, Xiaoliang Gong, Jingyu Shi, Hosameldin Ahmed, Asoke K. NandiList of authors in order
- Landing page
-
https://doi.org/10.1016/j.abrep.2019.100200Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.1016/j.abrep.2019.100200Direct OA link when available
- Concepts
-
Support vector machine, Conscientiousness, Artificial intelligence, Machine learning, Neuroticism, Openness to experience, Agreeableness, Extraversion and introversion, Computer science, Psychology, Big Five personality traits, Personality, Applied psychology, Social psychologyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
42Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 5, 2024: 7, 2023: 6, 2022: 7, 2021: 11Per-year citation counts (last 5 years)
- References (count)
-
105Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W2959528333 |
|---|---|
| doi | https://doi.org/10.1016/j.abrep.2019.100200 |
| ids.doi | https://doi.org/10.1016/j.abrep.2019.100200 |
| ids.mag | 2959528333 |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/31508477 |
| ids.openalex | https://openalex.org/W2959528333 |
| fwci | 13.22700963 |
| type | article |
| title | Internet addiction disorder detection of Chinese college students using several personality questionnaire data and support vector machine |
| biblio.issue | |
| biblio.volume | 10 |
| biblio.last_page | 100200 |
| biblio.first_page | 100200 |
| grants[0].funder | https://openalex.org/F4320309612 |
| grants[0].award_id | |
| grants[0].funder_display_name | Natural Science Foundation of Shanghai |
| grants[1].funder | https://openalex.org/F4320322449 |
| grants[1].award_id | |
| grants[1].funder_display_name | Tongji University |
| topics[0].id | https://openalex.org/T10355 |
| topics[0].field.id | https://openalex.org/fields/33 |
| topics[0].field.display_name | Social Sciences |
| topics[0].score | 0.9997000098228455 |
| topics[0].domain.id | https://openalex.org/domains/2 |
| topics[0].domain.display_name | Social Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/3312 |
| topics[0].subfield.display_name | Sociology and Political Science |
| topics[0].display_name | Impact of Technology on Adolescents |
| topics[1].id | https://openalex.org/T13283 |
| topics[1].field.id | https://openalex.org/fields/32 |
| topics[1].field.display_name | Psychology |
| topics[1].score | 0.9531000256538391 |
| topics[1].domain.id | https://openalex.org/domains/2 |
| topics[1].domain.display_name | Social Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/3205 |
| topics[1].subfield.display_name | Experimental and Cognitive Psychology |
| topics[1].display_name | Mental Health Research Topics |
| topics[2].id | https://openalex.org/T11040 |
| topics[2].field.id | https://openalex.org/fields/32 |
| topics[2].field.display_name | Psychology |
| topics[2].score | 0.9128999710083008 |
| topics[2].domain.id | https://openalex.org/domains/2 |
| topics[2].domain.display_name | Social Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/3203 |
| topics[2].subfield.display_name | Clinical Psychology |
| topics[2].display_name | Personality Traits and Psychology |
| funders[0].id | https://openalex.org/F4320309612 |
| funders[0].ror | |
| funders[0].display_name | Natural Science Foundation of Shanghai |
| funders[1].id | https://openalex.org/F4320322449 |
| funders[1].ror | https://ror.org/03rc6as71 |
| funders[1].display_name | Tongji University |
| funders[2].id | https://openalex.org/F4320335787 |
| funders[2].ror | |
| funders[2].display_name | Fundamental Research Funds for the Central Universities |
| is_xpac | False |
| apc_list.value | 2470 |
| apc_list.currency | USD |
| apc_list.value_usd | 2470 |
| apc_paid.value | 2470 |
| apc_paid.currency | USD |
| apc_paid.value_usd | 2470 |
| concepts[0].id | https://openalex.org/C12267149 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7927709817886353 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q282453 |
| concepts[0].display_name | Support vector machine |
| concepts[1].id | https://openalex.org/C172141706 |
| concepts[1].level | 5 |
| concepts[1].score | 0.7784523367881775 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q1307067 |
| concepts[1].display_name | Conscientiousness |
| concepts[2].id | https://openalex.org/C154945302 |
| concepts[2].level | 1 |
| concepts[2].score | 0.6064508557319641 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[2].display_name | Artificial intelligence |
| concepts[3].id | https://openalex.org/C119857082 |
| concepts[3].level | 1 |
| concepts[3].score | 0.5938528776168823 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[3].display_name | Machine learning |
| concepts[4].id | https://openalex.org/C94612546 |
| concepts[4].level | 3 |
| concepts[4].score | 0.5825875401496887 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q1540168 |
| concepts[4].display_name | Neuroticism |
| concepts[5].id | https://openalex.org/C84976871 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5217714905738831 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q2015673 |
| concepts[5].display_name | Openness to experience |
| concepts[6].id | https://openalex.org/C170760736 |
| concepts[6].level | 5 |
| concepts[6].score | 0.5139133930206299 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q380358 |
| concepts[6].display_name | Agreeableness |
| concepts[7].id | https://openalex.org/C127816348 |
| concepts[7].level | 4 |
| concepts[7].score | 0.4596611261367798 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q127588 |
| concepts[7].display_name | Extraversion and introversion |
| concepts[8].id | https://openalex.org/C41008148 |
| concepts[8].level | 0 |
| concepts[8].score | 0.45859992504119873 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[8].display_name | Computer science |
| concepts[9].id | https://openalex.org/C15744967 |
| concepts[9].level | 0 |
| concepts[9].score | 0.4426339268684387 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q9418 |
| concepts[9].display_name | Psychology |
| concepts[10].id | https://openalex.org/C2865642 |
| concepts[10].level | 3 |
| concepts[10].score | 0.43384701013565063 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q378132 |
| concepts[10].display_name | Big Five personality traits |
| concepts[11].id | https://openalex.org/C187288502 |
| concepts[11].level | 2 |
| concepts[11].score | 0.3771239221096039 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q641118 |
| concepts[11].display_name | Personality |
| concepts[12].id | https://openalex.org/C75630572 |
| concepts[12].level | 1 |
| concepts[12].score | 0.32089632749557495 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q538904 |
| concepts[12].display_name | Applied psychology |
| concepts[13].id | https://openalex.org/C77805123 |
| concepts[13].level | 1 |
| concepts[13].score | 0.1661597490310669 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q161272 |
| concepts[13].display_name | Social psychology |
| keywords[0].id | https://openalex.org/keywords/support-vector-machine |
| keywords[0].score | 0.7927709817886353 |
| keywords[0].display_name | Support vector machine |
| keywords[1].id | https://openalex.org/keywords/conscientiousness |
| keywords[1].score | 0.7784523367881775 |
| keywords[1].display_name | Conscientiousness |
| keywords[2].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[2].score | 0.6064508557319641 |
| keywords[2].display_name | Artificial intelligence |
| keywords[3].id | https://openalex.org/keywords/machine-learning |
| keywords[3].score | 0.5938528776168823 |
| keywords[3].display_name | Machine learning |
| keywords[4].id | https://openalex.org/keywords/neuroticism |
| keywords[4].score | 0.5825875401496887 |
| keywords[4].display_name | Neuroticism |
| keywords[5].id | https://openalex.org/keywords/openness-to-experience |
| keywords[5].score | 0.5217714905738831 |
| keywords[5].display_name | Openness to experience |
| keywords[6].id | https://openalex.org/keywords/agreeableness |
| keywords[6].score | 0.5139133930206299 |
| keywords[6].display_name | Agreeableness |
| keywords[7].id | https://openalex.org/keywords/extraversion-and-introversion |
| keywords[7].score | 0.4596611261367798 |
| keywords[7].display_name | Extraversion and introversion |
| keywords[8].id | https://openalex.org/keywords/computer-science |
| keywords[8].score | 0.45859992504119873 |
| keywords[8].display_name | Computer science |
| keywords[9].id | https://openalex.org/keywords/psychology |
| keywords[9].score | 0.4426339268684387 |
| keywords[9].display_name | Psychology |
| keywords[10].id | https://openalex.org/keywords/big-five-personality-traits |
| keywords[10].score | 0.43384701013565063 |
| keywords[10].display_name | Big Five personality traits |
| keywords[11].id | https://openalex.org/keywords/personality |
| keywords[11].score | 0.3771239221096039 |
| keywords[11].display_name | Personality |
| keywords[12].id | https://openalex.org/keywords/applied-psychology |
| keywords[12].score | 0.32089632749557495 |
| keywords[12].display_name | Applied psychology |
| keywords[13].id | https://openalex.org/keywords/social-psychology |
| keywords[13].score | 0.1661597490310669 |
| keywords[13].display_name | Social psychology |
| language | en |
| locations[0].id | doi:10.1016/j.abrep.2019.100200 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S2898531107 |
| locations[0].source.issn | 2352-8532 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2352-8532 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Addictive Behaviors Reports |
| locations[0].source.host_organization | https://openalex.org/P4310320990 |
| locations[0].source.host_organization_name | Elsevier BV |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320990 |
| locations[0].license | cc-by-nc-nd |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by-nc-nd |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Addictive Behaviors Reports |
| locations[0].landing_page_url | https://doi.org/10.1016/j.abrep.2019.100200 |
| locations[1].id | pmid:31508477 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306525036 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | Addictive behaviors reports |
| locations[1].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/31508477 |
| locations[2].id | pmh:oai:v-lib-bura1.brunel.ac.uk:2438/19881 |
| locations[2].is_oa | False |
| locations[2].source | |
| locations[2].license | |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | Article |
| locations[2].license_id | |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | |
| locations[2].landing_page_url | http://bura.brunel.ac.uk/handle/2438/19881 |
| locations[3].id | pmh:oai:doaj.org/article:e031bd330e9f40c794ae2b615b89e212 |
| locations[3].is_oa | True |
| locations[3].source.id | https://openalex.org/S4306401280 |
| locations[3].source.issn | |
| locations[3].source.type | repository |
| locations[3].source.is_oa | False |
| locations[3].source.issn_l | |
| locations[3].source.is_core | False |
| locations[3].source.is_in_doaj | False |
| locations[3].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[3].source.host_organization | |
| locations[3].source.host_organization_name | |
| locations[3].source.host_organization_lineage | |
| locations[3].license | cc-by-sa |
| locations[3].pdf_url | |
| locations[3].version | submittedVersion |
| locations[3].raw_type | article |
| locations[3].license_id | https://openalex.org/licenses/cc-by-sa |
| locations[3].is_accepted | False |
| locations[3].is_published | False |
| locations[3].raw_source_name | Addictive Behaviors Reports, Vol 10, Iss , Pp - (2019) |
| locations[3].landing_page_url | https://doaj.org/article/e031bd330e9f40c794ae2b615b89e212 |
| locations[4].id | pmh:oai:pubmedcentral.nih.gov:6726843 |
| locations[4].is_oa | True |
| locations[4].source.id | https://openalex.org/S2764455111 |
| locations[4].source.issn | |
| locations[4].source.type | repository |
| locations[4].source.is_oa | False |
| locations[4].source.issn_l | |
| locations[4].source.is_core | False |
| locations[4].source.is_in_doaj | False |
| locations[4].source.display_name | PubMed Central |
| locations[4].source.host_organization | https://openalex.org/I1299303238 |
| locations[4].source.host_organization_name | National Institutes of Health |
| locations[4].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[4].license | |
| locations[4].pdf_url | |
| locations[4].version | submittedVersion |
| locations[4].raw_type | Text |
| locations[4].license_id | |
| locations[4].is_accepted | False |
| locations[4].is_published | False |
| locations[4].raw_source_name | Addict Behav Rep |
| locations[4].landing_page_url | https://www.ncbi.nlm.nih.gov/pmc/articles/6726843 |
| indexed_in | crossref, doaj, pubmed |
| authorships[0].author.id | https://openalex.org/A5014510735 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-3875-2676 |
| authorships[0].author.display_name | Zonglin Di |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I116953780 |
| authorships[0].affiliations[0].raw_affiliation_string | School of Electronic and Information Engineering, Tongji University, Shanghai, China |
| authorships[0].institutions[0].id | https://openalex.org/I116953780 |
| authorships[0].institutions[0].ror | https://ror.org/03rc6as71 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I116953780 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Tongji University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Zonglin Di |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | School of Electronic and Information Engineering, Tongji University, Shanghai, China |
| authorships[1].author.id | https://openalex.org/A5050426623 |
| authorships[1].author.orcid | https://orcid.org/0009-0004-6007-2222 |
| authorships[1].author.display_name | Xiaoliang Gong |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I116953780 |
| authorships[1].affiliations[0].raw_affiliation_string | School of Electronic and Information Engineering, Tongji University, Shanghai, China |
| authorships[1].institutions[0].id | https://openalex.org/I116953780 |
| authorships[1].institutions[0].ror | https://ror.org/03rc6as71 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I116953780 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Tongji University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Xiaoliang Gong |
| authorships[1].is_corresponding | True |
| authorships[1].raw_affiliation_strings | School of Electronic and Information Engineering, Tongji University, Shanghai, China |
| authorships[2].author.id | https://openalex.org/A5112262048 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Jingyu Shi |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I4210128175 |
| authorships[2].affiliations[0].raw_affiliation_string | East Hospital, Tongji University School of Medicine, Shanghai 200120, China |
| authorships[2].institutions[0].id | https://openalex.org/I4210128175 |
| authorships[2].institutions[0].ror | https://ror.org/038xmzj21 |
| authorships[2].institutions[0].type | healthcare |
| authorships[2].institutions[0].lineage | https://openalex.org/I4210128175 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | Shanghai East Hospital |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Jingyu Shi |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | East Hospital, Tongji University School of Medicine, Shanghai 200120, China |
| authorships[3].author.id | https://openalex.org/A5042560374 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-8523-1099 |
| authorships[3].author.display_name | Hosameldin Ahmed |
| authorships[3].countries | GB |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I59433898 |
| authorships[3].affiliations[0].raw_affiliation_string | Department of Electronic and Computer Engineering, Brunel University London, Uxbridge, Middlesex, UK |
| authorships[3].institutions[0].id | https://openalex.org/I59433898 |
| authorships[3].institutions[0].ror | https://ror.org/00dn4t376 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I59433898 |
| authorships[3].institutions[0].country_code | GB |
| authorships[3].institutions[0].display_name | Brunel University of London |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Hosameldin O.A. Ahmed |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Department of Electronic and Computer Engineering, Brunel University London, Uxbridge, Middlesex, UK |
| authorships[4].author.id | https://openalex.org/A5010643037 |
| authorships[4].author.orcid | https://orcid.org/0000-0001-6248-2875 |
| authorships[4].author.display_name | Asoke K. Nandi |
| authorships[4].countries | CN, GB |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I59433898 |
| authorships[4].affiliations[0].raw_affiliation_string | Department of Electronic and Computer Engineering, Brunel University London, Uxbridge, Middlesex, UK |
| authorships[4].affiliations[1].institution_ids | https://openalex.org/I116953780 |
| authorships[4].affiliations[1].raw_affiliation_string | School of Electronic and Information Engineering, Tongji University, Shanghai, China |
| authorships[4].institutions[0].id | https://openalex.org/I116953780 |
| authorships[4].institutions[0].ror | https://ror.org/03rc6as71 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I116953780 |
| authorships[4].institutions[0].country_code | CN |
| authorships[4].institutions[0].display_name | Tongji University |
| authorships[4].institutions[1].id | https://openalex.org/I59433898 |
| authorships[4].institutions[1].ror | https://ror.org/00dn4t376 |
| authorships[4].institutions[1].type | education |
| authorships[4].institutions[1].lineage | https://openalex.org/I59433898 |
| authorships[4].institutions[1].country_code | GB |
| authorships[4].institutions[1].display_name | Brunel University of London |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Asoke K. Nandi |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Department of Electronic and Computer Engineering, Brunel University London, Uxbridge, Middlesex, UK, School of Electronic and Information Engineering, Tongji University, Shanghai, China |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.1016/j.abrep.2019.100200 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Internet addiction disorder detection of Chinese college students using several personality questionnaire data and support vector machine |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-08T23:21:52.890332 |
| primary_topic.id | https://openalex.org/T10355 |
| primary_topic.field.id | https://openalex.org/fields/33 |
| primary_topic.field.display_name | Social Sciences |
| primary_topic.score | 0.9997000098228455 |
| primary_topic.domain.id | https://openalex.org/domains/2 |
| primary_topic.domain.display_name | Social Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/3312 |
| primary_topic.subfield.display_name | Sociology and Political Science |
| primary_topic.display_name | Impact of Technology on Adolescents |
| related_works | https://openalex.org/W2030868578, https://openalex.org/W2905413927, https://openalex.org/W2326877552, https://openalex.org/W2256992190, https://openalex.org/W2995587855, https://openalex.org/W1890366823, https://openalex.org/W3089625227, https://openalex.org/W2900088649, https://openalex.org/W4396999938, https://openalex.org/W602680304 |
| cited_by_count | 42 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 5 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 7 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 6 |
| counts_by_year[3].year | 2022 |
| counts_by_year[3].cited_by_count | 7 |
| counts_by_year[4].year | 2021 |
| counts_by_year[4].cited_by_count | 11 |
| counts_by_year[5].year | 2020 |
| counts_by_year[5].cited_by_count | 6 |
| locations_count | 5 |
| best_oa_location.id | doi:10.1016/j.abrep.2019.100200 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S2898531107 |
| best_oa_location.source.issn | 2352-8532 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2352-8532 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Addictive Behaviors Reports |
| best_oa_location.source.host_organization | https://openalex.org/P4310320990 |
| best_oa_location.source.host_organization_name | Elsevier BV |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310320990 |
| best_oa_location.license | cc-by-nc-nd |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by-nc-nd |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Addictive Behaviors Reports |
| best_oa_location.landing_page_url | https://doi.org/10.1016/j.abrep.2019.100200 |
| primary_location.id | doi:10.1016/j.abrep.2019.100200 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S2898531107 |
| primary_location.source.issn | 2352-8532 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2352-8532 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Addictive Behaviors Reports |
| primary_location.source.host_organization | https://openalex.org/P4310320990 |
| primary_location.source.host_organization_name | Elsevier BV |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320990 |
| primary_location.license | cc-by-nc-nd |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by-nc-nd |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Addictive Behaviors Reports |
| primary_location.landing_page_url | https://doi.org/10.1016/j.abrep.2019.100200 |
| publication_date | 2019-07-11 |
| publication_year | 2019 |
| referenced_works | https://openalex.org/W2913353463, https://openalex.org/W1968901086, https://openalex.org/W1995450389, https://openalex.org/W2089996056, https://openalex.org/W2292385715, https://openalex.org/W2007082250, https://openalex.org/W1732443716, https://openalex.org/W6736818477, https://openalex.org/W2793415995, https://openalex.org/W2061258922, https://openalex.org/W2802531622, https://openalex.org/W4239510810, https://openalex.org/W2045883408, https://openalex.org/W6749323639, https://openalex.org/W2556419861, https://openalex.org/W1998872554, https://openalex.org/W2800741688, https://openalex.org/W2791667264, https://openalex.org/W2786204509, https://openalex.org/W6728791649, https://openalex.org/W2766061626, https://openalex.org/W2097932601, https://openalex.org/W2084081433, https://openalex.org/W2534791825, https://openalex.org/W6644682428, https://openalex.org/W1599658760, https://openalex.org/W6743956343, https://openalex.org/W1998871699, https://openalex.org/W2365990854, https://openalex.org/W2011095012, https://openalex.org/W2033190760, https://openalex.org/W2000881598, https://openalex.org/W232552749, https://openalex.org/W2166267770, https://openalex.org/W2083780116, https://openalex.org/W1987385632, https://openalex.org/W2066254896, https://openalex.org/W2008936898, https://openalex.org/W2041692846, https://openalex.org/W2616903723, https://openalex.org/W2790213315, https://openalex.org/W2365282848, https://openalex.org/W2071757442, https://openalex.org/W2140656914, https://openalex.org/W2789818133, https://openalex.org/W2066770916, https://openalex.org/W2168742466, https://openalex.org/W6604735901, https://openalex.org/W2087229407, https://openalex.org/W2071559616, https://openalex.org/W2353201731, https://openalex.org/W2790619958, https://openalex.org/W2121682721, https://openalex.org/W2036271857, https://openalex.org/W2464609829, https://openalex.org/W2060003036, https://openalex.org/W2015537089, https://openalex.org/W2054515032, https://openalex.org/W2066235252, https://openalex.org/W2137739415, https://openalex.org/W2759023472, https://openalex.org/W2061864302, https://openalex.org/W2107641306, https://openalex.org/W2030854448, https://openalex.org/W2112081648, https://openalex.org/W2134077691, https://openalex.org/W2049836840, https://openalex.org/W2150294678, https://openalex.org/W2134599820, https://openalex.org/W1974740455, https://openalex.org/W2355355436, https://openalex.org/W2161864240, https://openalex.org/W2016124154, https://openalex.org/W2803662225, https://openalex.org/W2765372061, https://openalex.org/W2167834909, https://openalex.org/W7055231948, https://openalex.org/W2151319119, https://openalex.org/W6636012622, https://openalex.org/W2027733460, https://openalex.org/W2055097229, https://openalex.org/W2009451478, https://openalex.org/W2775259072, https://openalex.org/W2513627707, https://openalex.org/W2162562909, https://openalex.org/W2557283755, https://openalex.org/W2537293117, https://openalex.org/W2159011576, https://openalex.org/W2109943925, https://openalex.org/W2792690738, https://openalex.org/W28882983, https://openalex.org/W4256672866, https://openalex.org/W2607965346, https://openalex.org/W2348070141, https://openalex.org/W2754247418, https://openalex.org/W2119821739, https://openalex.org/W1680392829, https://openalex.org/W2134089414, https://openalex.org/W2416912299, https://openalex.org/W2209131898, https://openalex.org/W1977556410, https://openalex.org/W115672504, https://openalex.org/W2090388864, https://openalex.org/W3100110286, https://openalex.org/W1498183065 |
| referenced_works_count | 105 |
| abstract_inverted_index.a | 44, 142 |
| abstract_inverted_index.IA | 149, 159 |
| abstract_inverted_index.In | 28 |
| abstract_inverted_index.We | 42, 108 |
| abstract_inverted_index.be | 185 |
| abstract_inverted_index.by | 165 |
| abstract_inverted_index.in | 167 |
| abstract_inverted_index.is | 17, 141, 160 |
| abstract_inverted_index.it | 7 |
| abstract_inverted_index.of | 4, 12, 35, 47, 71, 148, 158, 191 |
| abstract_inverted_index.on | 112 |
| abstract_inverted_index.to | 19, 24, 39, 184 |
| abstract_inverted_index.we | 31 |
| abstract_inverted_index.± | 57 |
| abstract_inverted_index.Big | 77 |
| abstract_inverted_index.IA. | 41, 192 |
| abstract_inverted_index.SVM | 140 |
| abstract_inverted_index.The | 154 |
| abstract_inverted_index.and | 21, 82, 97, 99, 106, 118, 125, 133, 150, 180 |
| abstract_inverted_index.are | 182 |
| abstract_inverted_index.for | 115, 130, 145, 188 |
| abstract_inverted_index.the | 1, 5, 10, 25, 33, 53, 68, 113, 131, 146, 168, 174, 189 |
| abstract_inverted_index.was | 163 |
| abstract_inverted_index.who | 61 |
| abstract_inverted_index.11th | 69 |
| abstract_inverted_index.2397 | 48 |
| abstract_inverted_index.BSCS | 100 |
| abstract_inverted_index.Chen | 83 |
| abstract_inverted_index.Five | 78 |
| abstract_inverted_index.Self | 64 |
| abstract_inverted_index.This | 136 |
| abstract_inverted_index.With | 0 |
| abstract_inverted_index.also | 8 |
| abstract_inverted_index.best | 155 |
| abstract_inverted_index.cure | 22 |
| abstract_inverted_index.data | 152 |
| abstract_inverted_index.five | 91 |
| abstract_inverted_index.from | 52 |
| abstract_inverted_index.grid | 128 |
| abstract_inverted_index.hard | 18 |
| abstract_inverted_index.that | 139 |
| abstract_inverted_index.this | 29 |
| abstract_inverted_index.with | 127 |
| abstract_inverted_index.work | 137 |
| abstract_inverted_index.(Age: | 55 |
| abstract_inverted_index.(IA), | 15 |
| abstract_inverted_index.0.70, | 58 |
| abstract_inverted_index.19.17 | 56 |
| abstract_inverted_index.BSCS, | 176 |
| abstract_inverted_index.Brief | 63 |
| abstract_inverted_index.C-SVM | 124, 166 |
| abstract_inverted_index.Male: | 59 |
| abstract_inverted_index.Motor | 105 |
| abstract_inverted_index.Scale | 66, 74, 86 |
| abstract_inverted_index.shown | 183 |
| abstract_inverted_index.three | 102 |
| abstract_inverted_index.where | 88 |
| abstract_inverted_index.which | 16, 162 |
| abstract_inverted_index.(SVMs) | 122 |
| abstract_inverted_index.96.32% | 161 |
| abstract_inverted_index.CBF-PI | 89 |
| abstract_inverted_index.Motor, | 177 |
| abstract_inverted_index.Vector | 120 |
| abstract_inverted_index.brings | 9 |
| abstract_inverted_index.detect | 40 |
| abstract_inverted_index.method | 144 |
| abstract_inverted_index.search | 129 |
| abstract_inverted_index.study, | 30 |
| abstract_inverted_index.(BSCS), | 67 |
| abstract_inverted_index.(CIAS), | 87 |
| abstract_inverted_index.64.17%) | 60 |
| abstract_inverted_index.BIS-11, | 175 |
| abstract_inverted_index.Barratt | 72 |
| abstract_inverted_index.Chinese | 49, 76 |
| abstract_inverted_index.Control | 65 |
| abstract_inverted_index.Support | 119 |
| abstract_inverted_index.applied | 109 |
| abstract_inverted_index.college | 50 |
| abstract_inverted_index.dataset | 45, 114, 170 |
| abstract_inverted_index.feature | 116 |
| abstract_inverted_index.machine | 36 |
| abstract_inverted_index.methods | 38 |
| abstract_inverted_index.version | 70 |
| abstract_inverted_index.without | 171 |
| abstract_inverted_index.(CBF-PI) | 81 |
| abstract_inverted_index.Finally, | 173 |
| abstract_inverted_index.Internet | 13, 84 |
| abstract_inverted_index.Machines | 121 |
| abstract_inverted_index.acquired | 43 |
| abstract_inverted_index.diagnose | 20 |
| abstract_inverted_index.explored | 32 |
| abstract_inverted_index.features | 187 |
| abstract_inverted_index.includes | 90, 101 |
| abstract_inverted_index.learning | 37 |
| abstract_inverted_index.obtained | 164 |
| abstract_inverted_index.reliable | 143 |
| abstract_inverted_index.students | 51 |
| abstract_inverted_index.(BIS-11), | 75 |
| abstract_inverted_index.6-feature | 169 |
| abstract_inverted_index.Addiction | 14, 85 |
| abstract_inverted_index.Internet, | 6 |
| abstract_inverted_index.Inventory | 80 |
| abstract_inverted_index.Student's | 110 |
| abstract_inverted_index.according | 23 |
| abstract_inverted_index.analysis. | 153 |
| abstract_inverted_index.challenge | 11 |
| abstract_inverted_index.completed | 62 |
| abstract_inverted_index.detection | 156, 190 |
| abstract_inverted_index.including | 123 |
| abstract_inverted_index.promising | 186 |
| abstract_inverted_index.research. | 27 |
| abstract_inverted_index.selection | 117 |
| abstract_inverted_index.(Openness, | 93 |
| abstract_inverted_index.University | 54 |
| abstract_inverted_index.assessment | 147 |
| abstract_inverted_index.consisting | 46 |
| abstract_inverted_index.parameters | 134 |
| abstract_inverted_index.(Attention, | 104 |
| abstract_inverted_index.Personality | 79 |
| abstract_inverted_index.development | 3 |
| abstract_inverted_index.feasibility | 34 |
| abstract_inverted_index.illustrates | 138 |
| abstract_inverted_index.performance | 157 |
| abstract_inverted_index.Neuroticism) | 98 |
| abstract_inverted_index.Neuroticism, | 178 |
| abstract_inverted_index.state-of-art | 26 |
| abstract_inverted_index.sub-features | 92, 103 |
| abstract_inverted_index.<i>t</i>-test | 111 |
| abstract_inverted_index.<i>ν</i>-SVM | 126 |
| abstract_inverted_index.Extraversion, | 94 |
| abstract_inverted_index.Impulsiveness | 73 |
| abstract_inverted_index.Non-planning, | 179 |
| abstract_inverted_index.optimization. | 135 |
| abstract_inverted_index.questionnaire | 151 |
| abstract_inverted_index.unprecedented | 2 |
| abstract_inverted_index.Agreeableness, | 96 |
| abstract_inverted_index.Non-planning). | 107 |
| abstract_inverted_index.classification | 132 |
| abstract_inverted_index.normalization. | 172 |
| abstract_inverted_index.Conscientiousness | 181 |
| abstract_inverted_index.Conscientiousness, | 95 |
| cited_by_percentile_year.max | 99 |
| cited_by_percentile_year.min | 98 |
| corresponding_author_ids | https://openalex.org/A5050426623 |
| countries_distinct_count | 2 |
| institutions_distinct_count | 5 |
| corresponding_institution_ids | https://openalex.org/I116953780 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/3 |
| sustainable_development_goals[0].score | 0.46000000834465027 |
| sustainable_development_goals[0].display_name | Good health and well-being |
| citation_normalized_percentile.value | 0.98337492 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |