InterpIoU: Robust bounding box regression loss within an interpolation-based IoU framework Article Swipe
Haoyuan Liu
,
Hiroshi Watanabe
·
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.1016/j.neucom.2025.132230
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.1016/j.neucom.2025.132230
Related Topics
Concepts
Metadata
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1016/j.neucom.2025.132230
- OA Status
- hybrid
- References
- 15
- OpenAlex ID
- https://openalex.org/W7107859968
All OpenAlex metadata
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W7107859968Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1016/j.neucom.2025.132230Digital Object Identifier
- Title
-
InterpIoU: Robust bounding box regression loss within an interpolation-based IoU frameworkWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-11-28Full publication date if available
- Authors
-
Haoyuan Liu, Hiroshi WatanabeList of authors in order
- Landing page
-
https://doi.org/10.1016/j.neucom.2025.132230Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
hybridOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.1016/j.neucom.2025.132230Direct OA link when available
- Concepts
-
Computer science, Bounding overwatch, Algorithm, Minimum bounding box, Regression, Artificial intelligence, Mathematics, Linear regression, Robustness (evolution), Pattern recognition (psychology), Mathematical optimization, Regression analysis, Black box, Robust regression, Data miningTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
15Number of works referenced by this work
Full payload
| id | https://openalex.org/W7107859968 |
|---|---|
| doi | https://doi.org/10.1016/j.neucom.2025.132230 |
| ids.doi | https://doi.org/10.1016/j.neucom.2025.132230 |
| ids.openalex | https://openalex.org/W7107859968 |
| fwci | 0.0 |
| type | article |
| title | InterpIoU: Robust bounding box regression loss within an interpolation-based IoU framework |
| biblio.issue | |
| biblio.volume | 666 |
| biblio.last_page | 132230 |
| biblio.first_page | 132230 |
| topics[0].id | https://openalex.org/T11612 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.34834492206573486 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Stochastic Gradient Optimization Techniques |
| topics[1].id | https://openalex.org/T11689 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.06348909437656403 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | Adversarial Robustness in Machine Learning |
| topics[2].id | https://openalex.org/T11697 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.054741933941841125 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1703 |
| topics[2].subfield.display_name | Computational Theory and Mathematics |
| topics[2].display_name | Numerical Methods and Algorithms |
| is_xpac | False |
| apc_list.value | 2470 |
| apc_list.currency | USD |
| apc_list.value_usd | 2470 |
| apc_paid.value | 2470 |
| apc_paid.currency | USD |
| apc_paid.value_usd | 2470 |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.6042928695678711 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C63584917 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6033623218536377 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q333286 |
| concepts[1].display_name | Bounding overwatch |
| concepts[2].id | https://openalex.org/C11413529 |
| concepts[2].level | 1 |
| concepts[2].score | 0.5184242725372314 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[2].display_name | Algorithm |
| concepts[3].id | https://openalex.org/C147037132 |
| concepts[3].level | 3 |
| concepts[3].score | 0.4823802709579468 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q6865426 |
| concepts[3].display_name | Minimum bounding box |
| concepts[4].id | https://openalex.org/C83546350 |
| concepts[4].level | 2 |
| concepts[4].score | 0.4614829421043396 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q1139051 |
| concepts[4].display_name | Regression |
| concepts[5].id | https://openalex.org/C154945302 |
| concepts[5].level | 1 |
| concepts[5].score | 0.4147399663925171 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[5].display_name | Artificial intelligence |
| concepts[6].id | https://openalex.org/C33923547 |
| concepts[6].level | 0 |
| concepts[6].score | 0.3597647547721863 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[6].display_name | Mathematics |
| concepts[7].id | https://openalex.org/C48921125 |
| concepts[7].level | 2 |
| concepts[7].score | 0.343044251203537 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q10861030 |
| concepts[7].display_name | Linear regression |
| concepts[8].id | https://openalex.org/C63479239 |
| concepts[8].level | 3 |
| concepts[8].score | 0.330910861492157 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q7353546 |
| concepts[8].display_name | Robustness (evolution) |
| concepts[9].id | https://openalex.org/C153180895 |
| concepts[9].level | 2 |
| concepts[9].score | 0.31940850615501404 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[9].display_name | Pattern recognition (psychology) |
| concepts[10].id | https://openalex.org/C126255220 |
| concepts[10].level | 1 |
| concepts[10].score | 0.3141794204711914 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q141495 |
| concepts[10].display_name | Mathematical optimization |
| concepts[11].id | https://openalex.org/C152877465 |
| concepts[11].level | 2 |
| concepts[11].score | 0.3073068857192993 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q208042 |
| concepts[11].display_name | Regression analysis |
| concepts[12].id | https://openalex.org/C94966114 |
| concepts[12].level | 2 |
| concepts[12].score | 0.2785481810569763 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q29256 |
| concepts[12].display_name | Black box |
| concepts[13].id | https://openalex.org/C70259352 |
| concepts[13].level | 3 |
| concepts[13].score | 0.26684990525245667 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q1847839 |
| concepts[13].display_name | Robust regression |
| concepts[14].id | https://openalex.org/C124101348 |
| concepts[14].level | 1 |
| concepts[14].score | 0.2621011734008789 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q172491 |
| concepts[14].display_name | Data mining |
| keywords[0].id | https://openalex.org/keywords/bounding-overwatch |
| keywords[0].score | 0.6033623218536377 |
| keywords[0].display_name | Bounding overwatch |
| keywords[1].id | https://openalex.org/keywords/minimum-bounding-box |
| keywords[1].score | 0.4823802709579468 |
| keywords[1].display_name | Minimum bounding box |
| keywords[2].id | https://openalex.org/keywords/regression |
| keywords[2].score | 0.4614829421043396 |
| keywords[2].display_name | Regression |
| keywords[3].id | https://openalex.org/keywords/linear-regression |
| keywords[3].score | 0.343044251203537 |
| keywords[3].display_name | Linear regression |
| keywords[4].id | https://openalex.org/keywords/robustness |
| keywords[4].score | 0.330910861492157 |
| keywords[4].display_name | Robustness (evolution) |
| keywords[5].id | https://openalex.org/keywords/pattern-recognition |
| keywords[5].score | 0.31940850615501404 |
| keywords[5].display_name | Pattern recognition (psychology) |
| language | en |
| locations[0].id | doi:10.1016/j.neucom.2025.132230 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S45693802 |
| locations[0].source.issn | 0925-2312, 1872-8286 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | 0925-2312 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Neurocomputing |
| locations[0].source.host_organization | https://openalex.org/P4310320990 |
| locations[0].source.host_organization_name | Elsevier BV |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320990 |
| locations[0].source.host_organization_lineage_names | Elsevier BV |
| locations[0].license | cc-by |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Neurocomputing |
| locations[0].landing_page_url | https://doi.org/10.1016/j.neucom.2025.132230 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A2141491061 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-8728-332X |
| authorships[0].author.display_name | Haoyuan Liu |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Haoyuan Liu |
| authorships[0].is_corresponding | True |
| authorships[1].author.id | https://openalex.org/A2031042103 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-5449-717X |
| authorships[1].author.display_name | Hiroshi Watanabe |
| authorships[1].author_position | last |
| authorships[1].raw_author_name | Hiroshi Watanabe |
| authorships[1].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.1016/j.neucom.2025.132230 |
| open_access.oa_status | hybrid |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-11-28T00:00:00 |
| display_name | InterpIoU: Robust bounding box regression loss within an interpolation-based IoU framework |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-12-04T23:47:47.292601 |
| primary_topic.id | https://openalex.org/T11612 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.34834492206573486 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Stochastic Gradient Optimization Techniques |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.1016/j.neucom.2025.132230 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S45693802 |
| best_oa_location.source.issn | 0925-2312, 1872-8286 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | 0925-2312 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Neurocomputing |
| best_oa_location.source.host_organization | https://openalex.org/P4310320990 |
| best_oa_location.source.host_organization_name | Elsevier BV |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310320990 |
| best_oa_location.source.host_organization_lineage_names | Elsevier BV |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Neurocomputing |
| best_oa_location.landing_page_url | https://doi.org/10.1016/j.neucom.2025.132230 |
| primary_location.id | doi:10.1016/j.neucom.2025.132230 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S45693802 |
| primary_location.source.issn | 0925-2312, 1872-8286 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | 0925-2312 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Neurocomputing |
| primary_location.source.host_organization | https://openalex.org/P4310320990 |
| primary_location.source.host_organization_name | Elsevier BV |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320990 |
| primary_location.source.host_organization_lineage_names | Elsevier BV |
| primary_location.license | cc-by |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Neurocomputing |
| primary_location.landing_page_url | https://doi.org/10.1016/j.neucom.2025.132230 |
| publication_date | 2025-11-28 |
| publication_year | 2025 |
| referenced_works | https://openalex.org/W4405430253, https://openalex.org/W4412431022, https://openalex.org/W4411465529, https://openalex.org/W2037227137, https://openalex.org/W4401630652, https://openalex.org/W4404704728, https://openalex.org/W4412430224, https://openalex.org/W4411114699, https://openalex.org/W6921519596, https://openalex.org/W4411554944, https://openalex.org/W4388915117, https://openalex.org/W4404450190, https://openalex.org/W4405835643, https://openalex.org/W3122173535, https://openalex.org/W3194790201 |
| referenced_works_count | 15 |
| abstract_inverted_index | |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 2 |
| citation_normalized_percentile.value | 0.9193184 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |