Interpretability of Deep Learning Article Swipe
Zhenlin Huang
,
Fan Li
,
Zhanliang Wang
,
Zhiyuan Wang
·
YOU?
·
· 2022
· Open Access
·
· DOI: https://doi.org/10.18178/ijfcc.2022.11.2.585
YOU?
·
· 2022
· Open Access
·
· DOI: https://doi.org/10.18178/ijfcc.2022.11.2.585
Deep Learning achieves surprising performance in many real-world tasks. However, on a black-box approach, computational techniques have been applied without a strong critical understanding of their properties. In this paper, we review the current methodologies and techniques about improving the interpretability of Deep Learning from different research directions. Some works are based on analysis of the learning process, some lay more emphasis on interpreted network architecture, and others intend to design self-interpretable Deep Learning models. This article analyzes the popular and advanced works in these fields and provides a future look for Deep Learning researchers.
Related Topics
Concepts
Metadata
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.18178/ijfcc.2022.11.2.585
- OA Status
- diamond
- Cited By
- 8
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4280517929
All OpenAlex metadata
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4280517929Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.18178/ijfcc.2022.11.2.585Digital Object Identifier
- Title
-
Interpretability of Deep LearningWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2022Year of publication
- Publication date
-
2022-05-18Full publication date if available
- Authors
-
Zhenlin Huang, Fan Li, Zhanliang Wang, Zhiyuan WangList of authors in order
- Landing page
-
https://doi.org/10.18178/ijfcc.2022.11.2.585Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
diamondOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.18178/ijfcc.2022.11.2.585Direct OA link when available
- Concepts
-
Interpretability, Computer science, Deep learning, Artificial intelligence, Black box, Process (computing), Machine learning, Data science, Operating systemTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
8Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 3, 2023: 3, 2020: 2Per-year citation counts (last 5 years)
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4280517929 |
|---|---|
| doi | https://doi.org/10.18178/ijfcc.2022.11.2.585 |
| ids.doi | https://doi.org/10.18178/ijfcc.2022.11.2.585 |
| ids.openalex | https://openalex.org/W4280517929 |
| fwci | 1.17479292 |
| type | article |
| title | Interpretability of Deep Learning |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | 39 |
| biblio.first_page | 34 |
| topics[0].id | https://openalex.org/T12026 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9911999702453613 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Explainable Artificial Intelligence (XAI) |
| topics[1].id | https://openalex.org/T11689 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9908000230789185 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | Adversarial Robustness in Machine Learning |
| topics[2].id | https://openalex.org/T12535 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9074000120162964 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1702 |
| topics[2].subfield.display_name | Artificial Intelligence |
| topics[2].display_name | Machine Learning and Data Classification |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C2781067378 |
| concepts[0].level | 2 |
| concepts[0].score | 0.9699954986572266 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q17027399 |
| concepts[0].display_name | Interpretability |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.8527011871337891 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C108583219 |
| concepts[2].level | 2 |
| concepts[2].score | 0.8336066603660583 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q197536 |
| concepts[2].display_name | Deep learning |
| concepts[3].id | https://openalex.org/C154945302 |
| concepts[3].level | 1 |
| concepts[3].score | 0.7316731214523315 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[3].display_name | Artificial intelligence |
| concepts[4].id | https://openalex.org/C94966114 |
| concepts[4].level | 2 |
| concepts[4].score | 0.6050930023193359 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q29256 |
| concepts[4].display_name | Black box |
| concepts[5].id | https://openalex.org/C98045186 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5500709414482117 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q205663 |
| concepts[5].display_name | Process (computing) |
| concepts[6].id | https://openalex.org/C119857082 |
| concepts[6].level | 1 |
| concepts[6].score | 0.5019786357879639 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[6].display_name | Machine learning |
| concepts[7].id | https://openalex.org/C2522767166 |
| concepts[7].level | 1 |
| concepts[7].score | 0.37472790479660034 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q2374463 |
| concepts[7].display_name | Data science |
| concepts[8].id | https://openalex.org/C111919701 |
| concepts[8].level | 1 |
| concepts[8].score | 0.0 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q9135 |
| concepts[8].display_name | Operating system |
| keywords[0].id | https://openalex.org/keywords/interpretability |
| keywords[0].score | 0.9699954986572266 |
| keywords[0].display_name | Interpretability |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.8527011871337891 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/deep-learning |
| keywords[2].score | 0.8336066603660583 |
| keywords[2].display_name | Deep learning |
| keywords[3].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[3].score | 0.7316731214523315 |
| keywords[3].display_name | Artificial intelligence |
| keywords[4].id | https://openalex.org/keywords/black-box |
| keywords[4].score | 0.6050930023193359 |
| keywords[4].display_name | Black box |
| keywords[5].id | https://openalex.org/keywords/process |
| keywords[5].score | 0.5500709414482117 |
| keywords[5].display_name | Process (computing) |
| keywords[6].id | https://openalex.org/keywords/machine-learning |
| keywords[6].score | 0.5019786357879639 |
| keywords[6].display_name | Machine learning |
| keywords[7].id | https://openalex.org/keywords/data-science |
| keywords[7].score | 0.37472790479660034 |
| keywords[7].display_name | Data science |
| language | en |
| locations[0].id | doi:10.18178/ijfcc.2022.11.2.585 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S2764608512 |
| locations[0].source.issn | 2010-3751 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2010-3751 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | International Journal of Future Computer and Communication |
| locations[0].source.host_organization | |
| locations[0].source.host_organization_name | |
| locations[0].license | |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | International Journal of Future Computer and Communication |
| locations[0].landing_page_url | https://doi.org/10.18178/ijfcc.2022.11.2.585 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5101113374 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Zhenlin Huang |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Zhenlin Huang |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5100373576 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-7566-1634 |
| authorships[1].author.display_name | Fan Li |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Fan Li |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5016894169 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-7438-5845 |
| authorships[2].author.display_name | Zhanliang Wang |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Zhanliang Wang |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5100462292 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-5990-9193 |
| authorships[3].author.display_name | Zhiyuan Wang |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Zhiyuan Wang |
| authorships[3].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.18178/ijfcc.2022.11.2.585 |
| open_access.oa_status | diamond |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Interpretability of Deep Learning |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T12026 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9911999702453613 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Explainable Artificial Intelligence (XAI) |
| related_works | https://openalex.org/W4377865163, https://openalex.org/W4385957992, https://openalex.org/W3129898729, https://openalex.org/W4229079080, https://openalex.org/W4206534706, https://openalex.org/W4385965371, https://openalex.org/W4380075502, https://openalex.org/W3006943036, https://openalex.org/W4299487748, https://openalex.org/W3037743169 |
| cited_by_count | 8 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 3 |
| counts_by_year[1].year | 2023 |
| counts_by_year[1].cited_by_count | 3 |
| counts_by_year[2].year | 2020 |
| counts_by_year[2].cited_by_count | 2 |
| locations_count | 1 |
| best_oa_location.id | doi:10.18178/ijfcc.2022.11.2.585 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S2764608512 |
| best_oa_location.source.issn | 2010-3751 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2010-3751 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | International Journal of Future Computer and Communication |
| best_oa_location.source.host_organization | |
| best_oa_location.source.host_organization_name | |
| best_oa_location.license | |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | International Journal of Future Computer and Communication |
| best_oa_location.landing_page_url | https://doi.org/10.18178/ijfcc.2022.11.2.585 |
| primary_location.id | doi:10.18178/ijfcc.2022.11.2.585 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S2764608512 |
| primary_location.source.issn | 2010-3751 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2010-3751 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | International Journal of Future Computer and Communication |
| primary_location.source.host_organization | |
| primary_location.source.host_organization_name | |
| primary_location.license | |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | International Journal of Future Computer and Communication |
| primary_location.landing_page_url | https://doi.org/10.18178/ijfcc.2022.11.2.585 |
| publication_date | 2022-05-18 |
| publication_year | 2022 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 11, 20, 88 |
| abstract_inverted_index.In | 27 |
| abstract_inverted_index.in | 5, 83 |
| abstract_inverted_index.of | 24, 41, 54 |
| abstract_inverted_index.on | 10, 52, 62 |
| abstract_inverted_index.to | 69 |
| abstract_inverted_index.we | 30 |
| abstract_inverted_index.and | 35, 66, 80, 86 |
| abstract_inverted_index.are | 50 |
| abstract_inverted_index.for | 91 |
| abstract_inverted_index.lay | 59 |
| abstract_inverted_index.the | 32, 39, 55, 78 |
| abstract_inverted_index.Deep | 0, 42, 72, 92 |
| abstract_inverted_index.Some | 48 |
| abstract_inverted_index.This | 75 |
| abstract_inverted_index.been | 17 |
| abstract_inverted_index.from | 44 |
| abstract_inverted_index.have | 16 |
| abstract_inverted_index.look | 90 |
| abstract_inverted_index.many | 6 |
| abstract_inverted_index.more | 60 |
| abstract_inverted_index.some | 58 |
| abstract_inverted_index.this | 28 |
| abstract_inverted_index.about | 37 |
| abstract_inverted_index.based | 51 |
| abstract_inverted_index.their | 25 |
| abstract_inverted_index.these | 84 |
| abstract_inverted_index.works | 49, 82 |
| abstract_inverted_index.design | 70 |
| abstract_inverted_index.fields | 85 |
| abstract_inverted_index.future | 89 |
| abstract_inverted_index.intend | 68 |
| abstract_inverted_index.others | 67 |
| abstract_inverted_index.paper, | 29 |
| abstract_inverted_index.review | 31 |
| abstract_inverted_index.strong | 21 |
| abstract_inverted_index.tasks. | 8 |
| abstract_inverted_index.applied | 18 |
| abstract_inverted_index.article | 76 |
| abstract_inverted_index.current | 33 |
| abstract_inverted_index.models. | 74 |
| abstract_inverted_index.network | 64 |
| abstract_inverted_index.popular | 79 |
| abstract_inverted_index.without | 19 |
| abstract_inverted_index.However, | 9 |
| abstract_inverted_index.Learning | 1, 43, 73, 93 |
| abstract_inverted_index.achieves | 2 |
| abstract_inverted_index.advanced | 81 |
| abstract_inverted_index.analysis | 53 |
| abstract_inverted_index.analyzes | 77 |
| abstract_inverted_index.critical | 22 |
| abstract_inverted_index.emphasis | 61 |
| abstract_inverted_index.learning | 56 |
| abstract_inverted_index.process, | 57 |
| abstract_inverted_index.provides | 87 |
| abstract_inverted_index.research | 46 |
| abstract_inverted_index.approach, | 13 |
| abstract_inverted_index.black-box | 12 |
| abstract_inverted_index.different | 45 |
| abstract_inverted_index.improving | 38 |
| abstract_inverted_index.real-world | 7 |
| abstract_inverted_index.surprising | 3 |
| abstract_inverted_index.techniques | 15, 36 |
| abstract_inverted_index.directions. | 47 |
| abstract_inverted_index.interpreted | 63 |
| abstract_inverted_index.performance | 4 |
| abstract_inverted_index.properties. | 26 |
| abstract_inverted_index.researchers. | 94 |
| abstract_inverted_index.architecture, | 65 |
| abstract_inverted_index.computational | 14 |
| abstract_inverted_index.methodologies | 34 |
| abstract_inverted_index.understanding | 23 |
| abstract_inverted_index.interpretability | 40 |
| abstract_inverted_index.self-interpretable | 71 |
| cited_by_percentile_year.max | 97 |
| cited_by_percentile_year.min | 94 |
| countries_distinct_count | 0 |
| institutions_distinct_count | 4 |
| citation_normalized_percentile.value | 0.77546163 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |