Interpretable machine learning for understanding compositional and testing condition effects on refractive index, density, dielectric constant, and loss tangent of inorganic melts and glasses Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.3389/fmats.2024.1412701
Artificial intelligence (AI) and machine learning (ML) have enabled property-targeted design of glasses. Several machine learning models and open-source tools in the literature allow researchers to predict the optical, physical, mechanical, and electrical properties of glasses as a function of their chemical compositions. However, these properties also depend on testing conditions. In this paper, we train machine learning models by considering composition and wavelength, temperature, and frequency to predict the refractive index, density, and the two electrical properties, i.e., dielectric constant and loss tangent of glasses, respectively. The predictions of trained models are explained using SHAP analysis, revealing that testing conditions, such as wavelength and temperature, interact majorly with network formers while predicting refractive index and density. In the case of electrical properties, network formers and frequency have the highest interactions, followed by network modifiers and intermediates, and hence govern predictions of dielectric constant and loss tangent. Overall, AI/ML models that can predict the properties of glasses as a function of their composition and testing conditions, coupled with SHAP plots, provide a practical tool to develop a range of glasses for application under varying conditions.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.3389/fmats.2024.1412701
- OA Status
- gold
- Cited By
- 7
- References
- 27
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4402576887
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4402576887Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.3389/fmats.2024.1412701Digital Object Identifier
- Title
-
Interpretable machine learning for understanding compositional and testing condition effects on refractive index, density, dielectric constant, and loss tangent of inorganic melts and glassesWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-09-18Full publication date if available
- Authors
-
Mohd Zaki, Jayadeva, N. M. Anoop KrishnanList of authors in order
- Landing page
-
https://doi.org/10.3389/fmats.2024.1412701Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.3389/fmats.2024.1412701Direct OA link when available
- Concepts
-
Dielectric, Dissipation factor, Refractive index, Tangent, Materials science, Constant (computer programming), Wavelength, Function (biology), Machine learning, Mineralogy, Optics, Computer science, Mathematics, Chemistry, Physics, Optoelectronics, Geometry, Biology, Programming language, Evolutionary biologyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
7Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 6, 2024: 1Per-year citation counts (last 5 years)
- References (count)
-
27Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4402576887 |
|---|---|
| doi | https://doi.org/10.3389/fmats.2024.1412701 |
| ids.doi | https://doi.org/10.3389/fmats.2024.1412701 |
| ids.openalex | https://openalex.org/W4402576887 |
| fwci | 3.00498298 |
| type | article |
| title | Interpretable machine learning for understanding compositional and testing condition effects on refractive index, density, dielectric constant, and loss tangent of inorganic melts and glasses |
| biblio.issue | |
| biblio.volume | 11 |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10544 |
| topics[0].field.id | https://openalex.org/fields/25 |
| topics[0].field.display_name | Materials Science |
| topics[0].score | 0.9991000294685364 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2503 |
| topics[0].subfield.display_name | Ceramics and Composites |
| topics[0].display_name | Glass properties and applications |
| topics[1].id | https://openalex.org/T13217 |
| topics[1].field.id | https://openalex.org/fields/16 |
| topics[1].field.display_name | Chemistry |
| topics[1].score | 0.986299991607666 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1604 |
| topics[1].subfield.display_name | Inorganic Chemistry |
| topics[1].display_name | Pigment Synthesis and Properties |
| topics[2].id | https://openalex.org/T11212 |
| topics[2].field.id | https://openalex.org/fields/12 |
| topics[2].field.display_name | Arts and Humanities |
| topics[2].score | 0.9635000228881836 |
| topics[2].domain.id | https://openalex.org/domains/2 |
| topics[2].domain.display_name | Social Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1204 |
| topics[2].subfield.display_name | Archeology |
| topics[2].display_name | Cultural Heritage Materials Analysis |
| is_xpac | False |
| apc_list.value | 3225 |
| apc_list.currency | USD |
| apc_list.value_usd | 3225 |
| apc_paid.value | 3225 |
| apc_paid.currency | USD |
| apc_paid.value_usd | 3225 |
| concepts[0].id | https://openalex.org/C133386390 |
| concepts[0].level | 2 |
| concepts[0].score | 0.774284839630127 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q184996 |
| concepts[0].display_name | Dielectric |
| concepts[1].id | https://openalex.org/C97274863 |
| concepts[1].level | 3 |
| concepts[1].score | 0.7584334015846252 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q1040795 |
| concepts[1].display_name | Dissipation factor |
| concepts[2].id | https://openalex.org/C42067758 |
| concepts[2].level | 2 |
| concepts[2].score | 0.7486860156059265 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q174102 |
| concepts[2].display_name | Refractive index |
| concepts[3].id | https://openalex.org/C138187205 |
| concepts[3].level | 2 |
| concepts[3].score | 0.559458315372467 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q131251 |
| concepts[3].display_name | Tangent |
| concepts[4].id | https://openalex.org/C192562407 |
| concepts[4].level | 0 |
| concepts[4].score | 0.5456826686859131 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q228736 |
| concepts[4].display_name | Materials science |
| concepts[5].id | https://openalex.org/C2777027219 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5236979722976685 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q1284190 |
| concepts[5].display_name | Constant (computer programming) |
| concepts[6].id | https://openalex.org/C6260449 |
| concepts[6].level | 2 |
| concepts[6].score | 0.486606240272522 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q41364 |
| concepts[6].display_name | Wavelength |
| concepts[7].id | https://openalex.org/C14036430 |
| concepts[7].level | 2 |
| concepts[7].score | 0.4342581629753113 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q3736076 |
| concepts[7].display_name | Function (biology) |
| concepts[8].id | https://openalex.org/C119857082 |
| concepts[8].level | 1 |
| concepts[8].score | 0.40794435143470764 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[8].display_name | Machine learning |
| concepts[9].id | https://openalex.org/C199289684 |
| concepts[9].level | 1 |
| concepts[9].score | 0.3751934766769409 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q83353 |
| concepts[9].display_name | Mineralogy |
| concepts[10].id | https://openalex.org/C120665830 |
| concepts[10].level | 1 |
| concepts[10].score | 0.37255001068115234 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q14620 |
| concepts[10].display_name | Optics |
| concepts[11].id | https://openalex.org/C41008148 |
| concepts[11].level | 0 |
| concepts[11].score | 0.3340526819229126 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[11].display_name | Computer science |
| concepts[12].id | https://openalex.org/C33923547 |
| concepts[12].level | 0 |
| concepts[12].score | 0.2523667514324188 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[12].display_name | Mathematics |
| concepts[13].id | https://openalex.org/C185592680 |
| concepts[13].level | 0 |
| concepts[13].score | 0.1657404601573944 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q2329 |
| concepts[13].display_name | Chemistry |
| concepts[14].id | https://openalex.org/C121332964 |
| concepts[14].level | 0 |
| concepts[14].score | 0.15639621019363403 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[14].display_name | Physics |
| concepts[15].id | https://openalex.org/C49040817 |
| concepts[15].level | 1 |
| concepts[15].score | 0.1522863805294037 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q193091 |
| concepts[15].display_name | Optoelectronics |
| concepts[16].id | https://openalex.org/C2524010 |
| concepts[16].level | 1 |
| concepts[16].score | 0.08705833554267883 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q8087 |
| concepts[16].display_name | Geometry |
| concepts[17].id | https://openalex.org/C86803240 |
| concepts[17].level | 0 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q420 |
| concepts[17].display_name | Biology |
| concepts[18].id | https://openalex.org/C199360897 |
| concepts[18].level | 1 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q9143 |
| concepts[18].display_name | Programming language |
| concepts[19].id | https://openalex.org/C78458016 |
| concepts[19].level | 1 |
| concepts[19].score | 0.0 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q840400 |
| concepts[19].display_name | Evolutionary biology |
| keywords[0].id | https://openalex.org/keywords/dielectric |
| keywords[0].score | 0.774284839630127 |
| keywords[0].display_name | Dielectric |
| keywords[1].id | https://openalex.org/keywords/dissipation-factor |
| keywords[1].score | 0.7584334015846252 |
| keywords[1].display_name | Dissipation factor |
| keywords[2].id | https://openalex.org/keywords/refractive-index |
| keywords[2].score | 0.7486860156059265 |
| keywords[2].display_name | Refractive index |
| keywords[3].id | https://openalex.org/keywords/tangent |
| keywords[3].score | 0.559458315372467 |
| keywords[3].display_name | Tangent |
| keywords[4].id | https://openalex.org/keywords/materials-science |
| keywords[4].score | 0.5456826686859131 |
| keywords[4].display_name | Materials science |
| keywords[5].id | https://openalex.org/keywords/constant |
| keywords[5].score | 0.5236979722976685 |
| keywords[5].display_name | Constant (computer programming) |
| keywords[6].id | https://openalex.org/keywords/wavelength |
| keywords[6].score | 0.486606240272522 |
| keywords[6].display_name | Wavelength |
| keywords[7].id | https://openalex.org/keywords/function |
| keywords[7].score | 0.4342581629753113 |
| keywords[7].display_name | Function (biology) |
| keywords[8].id | https://openalex.org/keywords/machine-learning |
| keywords[8].score | 0.40794435143470764 |
| keywords[8].display_name | Machine learning |
| keywords[9].id | https://openalex.org/keywords/mineralogy |
| keywords[9].score | 0.3751934766769409 |
| keywords[9].display_name | Mineralogy |
| keywords[10].id | https://openalex.org/keywords/optics |
| keywords[10].score | 0.37255001068115234 |
| keywords[10].display_name | Optics |
| keywords[11].id | https://openalex.org/keywords/computer-science |
| keywords[11].score | 0.3340526819229126 |
| keywords[11].display_name | Computer science |
| keywords[12].id | https://openalex.org/keywords/mathematics |
| keywords[12].score | 0.2523667514324188 |
| keywords[12].display_name | Mathematics |
| keywords[13].id | https://openalex.org/keywords/chemistry |
| keywords[13].score | 0.1657404601573944 |
| keywords[13].display_name | Chemistry |
| keywords[14].id | https://openalex.org/keywords/physics |
| keywords[14].score | 0.15639621019363403 |
| keywords[14].display_name | Physics |
| keywords[15].id | https://openalex.org/keywords/optoelectronics |
| keywords[15].score | 0.1522863805294037 |
| keywords[15].display_name | Optoelectronics |
| keywords[16].id | https://openalex.org/keywords/geometry |
| keywords[16].score | 0.08705833554267883 |
| keywords[16].display_name | Geometry |
| language | en |
| locations[0].id | doi:10.3389/fmats.2024.1412701 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S2595389538 |
| locations[0].source.issn | 2296-8016 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2296-8016 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Frontiers in Materials |
| locations[0].source.host_organization | https://openalex.org/P4310320527 |
| locations[0].source.host_organization_name | Frontiers Media |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320527 |
| locations[0].source.host_organization_lineage_names | Frontiers Media |
| locations[0].license | cc-by |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Frontiers in Materials |
| locations[0].landing_page_url | https://doi.org/10.3389/fmats.2024.1412701 |
| locations[1].id | pmh:oai:doaj.org/article:fc6cfa4dcddc43aa8da52602259e210b |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | Frontiers in Materials, Vol 11 (2024) |
| locations[1].landing_page_url | https://doaj.org/article/fc6cfa4dcddc43aa8da52602259e210b |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5046327692 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-4551-3470 |
| authorships[0].author.display_name | Mohd Zaki |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Mohd Zaki |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5002842122 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Jayadeva |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | None Jayadeva |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5065129881 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-1500-4947 |
| authorships[2].author.display_name | N. M. Anoop Krishnan |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | N. M. Anoop Krishnan |
| authorships[2].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.3389/fmats.2024.1412701 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Interpretable machine learning for understanding compositional and testing condition effects on refractive index, density, dielectric constant, and loss tangent of inorganic melts and glasses |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10544 |
| primary_topic.field.id | https://openalex.org/fields/25 |
| primary_topic.field.display_name | Materials Science |
| primary_topic.score | 0.9991000294685364 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2503 |
| primary_topic.subfield.display_name | Ceramics and Composites |
| primary_topic.display_name | Glass properties and applications |
| related_works | https://openalex.org/W4390098279, https://openalex.org/W2594346618, https://openalex.org/W2184626740, https://openalex.org/W2073047817, https://openalex.org/W3004699026, https://openalex.org/W2665130065, https://openalex.org/W2061199333, https://openalex.org/W2064055039, https://openalex.org/W2324768126, https://openalex.org/W2796694554 |
| cited_by_count | 7 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 6 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 1 |
| locations_count | 2 |
| best_oa_location.id | doi:10.3389/fmats.2024.1412701 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S2595389538 |
| best_oa_location.source.issn | 2296-8016 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2296-8016 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Frontiers in Materials |
| best_oa_location.source.host_organization | https://openalex.org/P4310320527 |
| best_oa_location.source.host_organization_name | Frontiers Media |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310320527 |
| best_oa_location.source.host_organization_lineage_names | Frontiers Media |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Frontiers in Materials |
| best_oa_location.landing_page_url | https://doi.org/10.3389/fmats.2024.1412701 |
| primary_location.id | doi:10.3389/fmats.2024.1412701 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S2595389538 |
| primary_location.source.issn | 2296-8016 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2296-8016 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Frontiers in Materials |
| primary_location.source.host_organization | https://openalex.org/P4310320527 |
| primary_location.source.host_organization_name | Frontiers Media |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320527 |
| primary_location.source.host_organization_lineage_names | Frontiers Media |
| primary_location.license | cc-by |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Frontiers in Materials |
| primary_location.landing_page_url | https://doi.org/10.3389/fmats.2024.1412701 |
| publication_date | 2024-09-18 |
| publication_year | 2024 |
| referenced_works | https://openalex.org/W2949676527, https://openalex.org/W3003541441, https://openalex.org/W2776584838, https://openalex.org/W4306251364, https://openalex.org/W4383162926, https://openalex.org/W3112725209, https://openalex.org/W2972103119, https://openalex.org/W4295210911, https://openalex.org/W2095321963, https://openalex.org/W3108518786, https://openalex.org/W4386158382, https://openalex.org/W3160734749, https://openalex.org/W3080404563, https://openalex.org/W2295598076, https://openalex.org/W2996420907, https://openalex.org/W2039858964, https://openalex.org/W2090934881, https://openalex.org/W2970507526, https://openalex.org/W6737947904, https://openalex.org/W4384927680, https://openalex.org/W4380929314, https://openalex.org/W4360603816, https://openalex.org/W4386609350, https://openalex.org/W3197142714, https://openalex.org/W4206104093, https://openalex.org/W2612690371, https://openalex.org/W569985532 |
| referenced_works_count | 27 |
| abstract_inverted_index.a | 37, 158, 171, 176 |
| abstract_inverted_index.In | 51, 117 |
| abstract_inverted_index.as | 36, 102, 157 |
| abstract_inverted_index.by | 59, 132 |
| abstract_inverted_index.in | 20 |
| abstract_inverted_index.of | 11, 34, 39, 84, 89, 120, 141, 155, 160, 178 |
| abstract_inverted_index.on | 48 |
| abstract_inverted_index.to | 25, 67, 174 |
| abstract_inverted_index.we | 54 |
| abstract_inverted_index.The | 87 |
| abstract_inverted_index.and | 3, 17, 31, 62, 65, 73, 81, 104, 115, 125, 135, 137, 144, 163 |
| abstract_inverted_index.are | 92 |
| abstract_inverted_index.can | 151 |
| abstract_inverted_index.for | 180 |
| abstract_inverted_index.the | 21, 27, 69, 74, 118, 128, 153 |
| abstract_inverted_index.two | 75 |
| abstract_inverted_index.(AI) | 2 |
| abstract_inverted_index.(ML) | 6 |
| abstract_inverted_index.SHAP | 95, 168 |
| abstract_inverted_index.also | 46 |
| abstract_inverted_index.case | 119 |
| abstract_inverted_index.have | 7, 127 |
| abstract_inverted_index.loss | 82, 145 |
| abstract_inverted_index.such | 101 |
| abstract_inverted_index.that | 98, 150 |
| abstract_inverted_index.this | 52 |
| abstract_inverted_index.tool | 173 |
| abstract_inverted_index.with | 108, 167 |
| abstract_inverted_index.AI/ML | 148 |
| abstract_inverted_index.allow | 23 |
| abstract_inverted_index.hence | 138 |
| abstract_inverted_index.i.e., | 78 |
| abstract_inverted_index.index | 114 |
| abstract_inverted_index.range | 177 |
| abstract_inverted_index.their | 40, 161 |
| abstract_inverted_index.these | 44 |
| abstract_inverted_index.tools | 19 |
| abstract_inverted_index.train | 55 |
| abstract_inverted_index.under | 182 |
| abstract_inverted_index.using | 94 |
| abstract_inverted_index.while | 111 |
| abstract_inverted_index.depend | 47 |
| abstract_inverted_index.design | 10 |
| abstract_inverted_index.govern | 139 |
| abstract_inverted_index.index, | 71 |
| abstract_inverted_index.models | 16, 58, 91, 149 |
| abstract_inverted_index.paper, | 53 |
| abstract_inverted_index.plots, | 169 |
| abstract_inverted_index.Several | 13 |
| abstract_inverted_index.coupled | 166 |
| abstract_inverted_index.develop | 175 |
| abstract_inverted_index.enabled | 8 |
| abstract_inverted_index.formers | 110, 124 |
| abstract_inverted_index.glasses | 35, 156, 179 |
| abstract_inverted_index.highest | 129 |
| abstract_inverted_index.machine | 4, 14, 56 |
| abstract_inverted_index.majorly | 107 |
| abstract_inverted_index.network | 109, 123, 133 |
| abstract_inverted_index.predict | 26, 68, 152 |
| abstract_inverted_index.provide | 170 |
| abstract_inverted_index.tangent | 83 |
| abstract_inverted_index.testing | 49, 99, 164 |
| abstract_inverted_index.trained | 90 |
| abstract_inverted_index.varying | 183 |
| abstract_inverted_index.However, | 43 |
| abstract_inverted_index.Overall, | 147 |
| abstract_inverted_index.chemical | 41 |
| abstract_inverted_index.constant | 80, 143 |
| abstract_inverted_index.density, | 72 |
| abstract_inverted_index.density. | 116 |
| abstract_inverted_index.followed | 131 |
| abstract_inverted_index.function | 38, 159 |
| abstract_inverted_index.glasses, | 85 |
| abstract_inverted_index.glasses. | 12 |
| abstract_inverted_index.interact | 106 |
| abstract_inverted_index.learning | 5, 15, 57 |
| abstract_inverted_index.optical, | 28 |
| abstract_inverted_index.tangent. | 146 |
| abstract_inverted_index.analysis, | 96 |
| abstract_inverted_index.explained | 93 |
| abstract_inverted_index.frequency | 66, 126 |
| abstract_inverted_index.modifiers | 134 |
| abstract_inverted_index.physical, | 29 |
| abstract_inverted_index.practical | 172 |
| abstract_inverted_index.revealing | 97 |
| abstract_inverted_index.Artificial | 0 |
| abstract_inverted_index.dielectric | 79, 142 |
| abstract_inverted_index.electrical | 32, 76, 121 |
| abstract_inverted_index.literature | 22 |
| abstract_inverted_index.predicting | 112 |
| abstract_inverted_index.properties | 33, 45, 154 |
| abstract_inverted_index.refractive | 70, 113 |
| abstract_inverted_index.wavelength | 103 |
| abstract_inverted_index.application | 181 |
| abstract_inverted_index.composition | 61, 162 |
| abstract_inverted_index.conditions, | 100, 165 |
| abstract_inverted_index.conditions. | 50, 184 |
| abstract_inverted_index.considering | 60 |
| abstract_inverted_index.mechanical, | 30 |
| abstract_inverted_index.open-source | 18 |
| abstract_inverted_index.predictions | 88, 140 |
| abstract_inverted_index.properties, | 77, 122 |
| abstract_inverted_index.researchers | 24 |
| abstract_inverted_index.wavelength, | 63 |
| abstract_inverted_index.intelligence | 1 |
| abstract_inverted_index.temperature, | 64, 105 |
| abstract_inverted_index.compositions. | 42 |
| abstract_inverted_index.interactions, | 130 |
| abstract_inverted_index.respectively. | 86 |
| abstract_inverted_index.intermediates, | 136 |
| abstract_inverted_index.property-targeted | 9 |
| cited_by_percentile_year.max | 99 |
| cited_by_percentile_year.min | 90 |
| countries_distinct_count | 0 |
| institutions_distinct_count | 3 |
| citation_normalized_percentile.value | 0.87459046 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |