Interpretable Machine Learning to Uncover Key Compound Drivers of Hydrological Droughts Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.5194/egusphere-egu24-9639
Hydrological drought (negative streamflow anomalies) can have significant societal and ecosystem impacts, and understanding its drivers is crucial for interpreting past and present droughts, as well as assessing future drought risk. However, despite recent research advancements, a comprehensive multivariate perspective on the drivers of hydrological drought remains elusive, particularly in the context of global warming, where distributional changes in drivers could result in an increased frequency of complex, compound events. In order to address this, quantifying the contribution of each driver is necessary. In our research, we devise an interpretable machine learning framework that can explain which hydrometeorological variables contribute to streamflow predictions. This is done by encoding a conceptual hydrological model into a neural network architecture, creating a physics-encoded hybrid model that allows us to maintain physical consistency and ensure a more causal understanding. We apply our framework to numerous North American basins across spatiotemporal scales and quantify the contribution of each potential driver to identified streamflow deficit events. We also investigate the mechanisms associated with compound drivers and assess if drought drivers are becoming increasingly complex due to climate change based on the defined compoundness index. Overall, our framework has managed to capture the contribution of diverse drought drivers to events across different hydroclimatological regimes. The results demonstrate the effectiveness of our novel method in improving hydrological drought process understanding, especially the mechanisms and severity of droughts associated with compound drivers, thereby facilitating increased preparedness for future drought risks.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- https://doi.org/10.5194/egusphere-egu24-9639
- OA Status
- gold
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4392579448
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4392579448Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.5194/egusphere-egu24-9639Digital Object Identifier
- Title
-
Interpretable Machine Learning to Uncover Key Compound Drivers of Hydrological DroughtsWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-03-08Full publication date if available
- Authors
-
Georgios Blougouras, Markus Reichstein, Mirco Migliavacca, Alexander Brenning, Shijie JiangList of authors in order
- Landing page
-
https://doi.org/10.5194/egusphere-egu24-9639Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.5194/egusphere-egu24-9639Direct OA link when available
- Concepts
-
Key (lock), Computer science, Artificial intelligence, Machine learning, Data science, Computer securityTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4392579448 |
|---|---|
| doi | https://doi.org/10.5194/egusphere-egu24-9639 |
| ids.doi | https://doi.org/10.5194/egusphere-egu24-9639 |
| ids.openalex | https://openalex.org/W4392579448 |
| fwci | |
| type | preprint |
| title | Interpretable Machine Learning to Uncover Key Compound Drivers of Hydrological Droughts |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11186 |
| topics[0].field.id | https://openalex.org/fields/23 |
| topics[0].field.display_name | Environmental Science |
| topics[0].score | 0.9751999974250793 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2306 |
| topics[0].subfield.display_name | Global and Planetary Change |
| topics[0].display_name | Hydrology and Drought Analysis |
| topics[1].id | https://openalex.org/T10330 |
| topics[1].field.id | https://openalex.org/fields/23 |
| topics[1].field.display_name | Environmental Science |
| topics[1].score | 0.9653000235557556 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2312 |
| topics[1].subfield.display_name | Water Science and Technology |
| topics[1].display_name | Hydrology and Watershed Management Studies |
| topics[2].id | https://openalex.org/T11490 |
| topics[2].field.id | https://openalex.org/fields/23 |
| topics[2].field.display_name | Environmental Science |
| topics[2].score | 0.9223999977111816 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2305 |
| topics[2].subfield.display_name | Environmental Engineering |
| topics[2].display_name | Hydrological Forecasting Using AI |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C26517878 |
| concepts[0].level | 2 |
| concepts[0].score | 0.8217668533325195 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q228039 |
| concepts[0].display_name | Key (lock) |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.45405226945877075 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C154945302 |
| concepts[2].level | 1 |
| concepts[2].score | 0.3997386693954468 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[2].display_name | Artificial intelligence |
| concepts[3].id | https://openalex.org/C119857082 |
| concepts[3].level | 1 |
| concepts[3].score | 0.36446982622146606 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[3].display_name | Machine learning |
| concepts[4].id | https://openalex.org/C2522767166 |
| concepts[4].level | 1 |
| concepts[4].score | 0.3542936444282532 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q2374463 |
| concepts[4].display_name | Data science |
| concepts[5].id | https://openalex.org/C38652104 |
| concepts[5].level | 1 |
| concepts[5].score | 0.10420501232147217 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q3510521 |
| concepts[5].display_name | Computer security |
| keywords[0].id | https://openalex.org/keywords/key |
| keywords[0].score | 0.8217668533325195 |
| keywords[0].display_name | Key (lock) |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.45405226945877075 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[2].score | 0.3997386693954468 |
| keywords[2].display_name | Artificial intelligence |
| keywords[3].id | https://openalex.org/keywords/machine-learning |
| keywords[3].score | 0.36446982622146606 |
| keywords[3].display_name | Machine learning |
| keywords[4].id | https://openalex.org/keywords/data-science |
| keywords[4].score | 0.3542936444282532 |
| keywords[4].display_name | Data science |
| keywords[5].id | https://openalex.org/keywords/computer-security |
| keywords[5].score | 0.10420501232147217 |
| keywords[5].display_name | Computer security |
| language | en |
| locations[0].id | doi:10.5194/egusphere-egu24-9639 |
| locations[0].is_oa | True |
| locations[0].source | |
| locations[0].license | cc-by |
| locations[0].pdf_url | |
| locations[0].version | acceptedVersion |
| locations[0].raw_type | posted-content |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | https://doi.org/10.5194/egusphere-egu24-9639 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5043378621 |
| authorships[0].author.orcid | https://orcid.org/0009-0006-0746-8214 |
| authorships[0].author.display_name | Georgios Blougouras |
| authorships[0].countries | DE |
| authorships[0].affiliations[0].raw_affiliation_string | ELLIS Unit Jena |
| authorships[0].affiliations[1].institution_ids | https://openalex.org/I4210154168 |
| authorships[0].affiliations[1].raw_affiliation_string | Max Planck Institute for Biogeochemistry, Jena, Germany |
| authorships[0].institutions[0].id | https://openalex.org/I4210154168 |
| authorships[0].institutions[0].ror | https://ror.org/051yxp643 |
| authorships[0].institutions[0].type | facility |
| authorships[0].institutions[0].lineage | https://openalex.org/I149899117, https://openalex.org/I4210154168 |
| authorships[0].institutions[0].country_code | DE |
| authorships[0].institutions[0].display_name | Max Planck Institute for Biogeochemistry |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Georgios Blougouras |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | ELLIS Unit Jena, Max Planck Institute for Biogeochemistry, Jena, Germany |
| authorships[1].author.id | https://openalex.org/A5071721504 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-5736-1112 |
| authorships[1].author.display_name | Markus Reichstein |
| authorships[1].countries | DE |
| authorships[1].affiliations[0].raw_affiliation_string | ELLIS Unit Jena |
| authorships[1].affiliations[1].institution_ids | https://openalex.org/I4210154168 |
| authorships[1].affiliations[1].raw_affiliation_string | Max Planck Institute for Biogeochemistry, Jena, Germany |
| authorships[1].institutions[0].id | https://openalex.org/I4210154168 |
| authorships[1].institutions[0].ror | https://ror.org/051yxp643 |
| authorships[1].institutions[0].type | facility |
| authorships[1].institutions[0].lineage | https://openalex.org/I149899117, https://openalex.org/I4210154168 |
| authorships[1].institutions[0].country_code | DE |
| authorships[1].institutions[0].display_name | Max Planck Institute for Biogeochemistry |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Markus Reichstein |
| authorships[1].is_corresponding | True |
| authorships[1].raw_affiliation_strings | ELLIS Unit Jena, Max Planck Institute for Biogeochemistry, Jena, Germany |
| authorships[2].author.id | https://openalex.org/A5081683556 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-3546-8407 |
| authorships[2].author.display_name | Mirco Migliavacca |
| authorships[2].countries | IT |
| authorships[2].affiliations[0].raw_affiliation_string | ELLIS Unit Jena |
| authorships[2].affiliations[1].institution_ids | https://openalex.org/I4210118689 |
| authorships[2].affiliations[1].raw_affiliation_string | European Commission Joint Research Centre (JRC), Ispra, Italy |
| authorships[2].institutions[0].id | https://openalex.org/I4210118689 |
| authorships[2].institutions[0].ror | https://ror.org/02qezmz13 |
| authorships[2].institutions[0].type | government |
| authorships[2].institutions[0].lineage | https://openalex.org/I1320481043, https://openalex.org/I2800387288, https://openalex.org/I4210118689, https://openalex.org/I4210161702 |
| authorships[2].institutions[0].country_code | IT |
| authorships[2].institutions[0].display_name | Joint Research Centre |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Mirco Migliavacca |
| authorships[2].is_corresponding | True |
| authorships[2].raw_affiliation_strings | ELLIS Unit Jena, European Commission Joint Research Centre (JRC), Ispra, Italy |
| authorships[3].author.id | https://openalex.org/A5019118021 |
| authorships[3].author.orcid | https://orcid.org/0000-0001-6640-679X |
| authorships[3].author.display_name | Alexander Brenning |
| authorships[3].countries | DE |
| authorships[3].affiliations[0].raw_affiliation_string | ELLIS Unit Jena |
| authorships[3].affiliations[1].institution_ids | https://openalex.org/I76198965 |
| authorships[3].affiliations[1].raw_affiliation_string | Department of Geography, Friedrich Schiller University Jena, Jena, Germany |
| authorships[3].institutions[0].id | https://openalex.org/I76198965 |
| authorships[3].institutions[0].ror | https://ror.org/05qpz1x62 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I76198965 |
| authorships[3].institutions[0].country_code | DE |
| authorships[3].institutions[0].display_name | Friedrich Schiller University Jena |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Alexander Brenning |
| authorships[3].is_corresponding | True |
| authorships[3].raw_affiliation_strings | Department of Geography, Friedrich Schiller University Jena, Jena, Germany, ELLIS Unit Jena |
| authorships[4].author.id | https://openalex.org/A5048628032 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-2808-9559 |
| authorships[4].author.display_name | Shijie Jiang |
| authorships[4].countries | DE |
| authorships[4].affiliations[0].raw_affiliation_string | ELLIS Unit Jena |
| authorships[4].affiliations[1].institution_ids | https://openalex.org/I4210154168 |
| authorships[4].affiliations[1].raw_affiliation_string | Max Planck Institute for Biogeochemistry, Jena, Germany |
| authorships[4].institutions[0].id | https://openalex.org/I4210154168 |
| authorships[4].institutions[0].ror | https://ror.org/051yxp643 |
| authorships[4].institutions[0].type | facility |
| authorships[4].institutions[0].lineage | https://openalex.org/I149899117, https://openalex.org/I4210154168 |
| authorships[4].institutions[0].country_code | DE |
| authorships[4].institutions[0].display_name | Max Planck Institute for Biogeochemistry |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Shijie Jiang |
| authorships[4].is_corresponding | True |
| authorships[4].raw_affiliation_strings | ELLIS Unit Jena, Max Planck Institute for Biogeochemistry, Jena, Germany |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.5194/egusphere-egu24-9639 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Interpretable Machine Learning to Uncover Key Compound Drivers of Hydrological Droughts |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11186 |
| primary_topic.field.id | https://openalex.org/fields/23 |
| primary_topic.field.display_name | Environmental Science |
| primary_topic.score | 0.9751999974250793 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2306 |
| primary_topic.subfield.display_name | Global and Planetary Change |
| primary_topic.display_name | Hydrology and Drought Analysis |
| related_works | https://openalex.org/W2961085424, https://openalex.org/W4306674287, https://openalex.org/W3046775127, https://openalex.org/W3107602296, https://openalex.org/W3170094116, https://openalex.org/W4386462264, https://openalex.org/W4364306694, https://openalex.org/W4312192474, https://openalex.org/W4283697347, https://openalex.org/W4210805261 |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.5194/egusphere-egu24-9639 |
| best_oa_location.is_oa | True |
| best_oa_location.source | |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | acceptedVersion |
| best_oa_location.raw_type | posted-content |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | https://doi.org/10.5194/egusphere-egu24-9639 |
| primary_location.id | doi:10.5194/egusphere-egu24-9639 |
| primary_location.is_oa | True |
| primary_location.source | |
| primary_location.license | cc-by |
| primary_location.pdf_url | |
| primary_location.version | acceptedVersion |
| primary_location.raw_type | posted-content |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | https://doi.org/10.5194/egusphere-egu24-9639 |
| publication_date | 2024-03-08 |
| publication_year | 2024 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 36, 108, 113, 118, 131 |
| abstract_inverted_index.In | 70, 83 |
| abstract_inverted_index.We | 135, 160 |
| abstract_inverted_index.an | 63, 88 |
| abstract_inverted_index.as | 24, 26 |
| abstract_inverted_index.by | 106 |
| abstract_inverted_index.if | 171 |
| abstract_inverted_index.in | 49, 58, 62, 216 |
| abstract_inverted_index.is | 16, 81, 104 |
| abstract_inverted_index.of | 43, 52, 66, 78, 151, 197, 212, 227 |
| abstract_inverted_index.on | 40, 183 |
| abstract_inverted_index.to | 72, 100, 125, 139, 155, 179, 193, 201 |
| abstract_inverted_index.us | 124 |
| abstract_inverted_index.we | 86 |
| abstract_inverted_index.The | 207 |
| abstract_inverted_index.and | 9, 12, 21, 129, 147, 169, 225 |
| abstract_inverted_index.are | 174 |
| abstract_inverted_index.can | 5, 94 |
| abstract_inverted_index.due | 178 |
| abstract_inverted_index.for | 18, 237 |
| abstract_inverted_index.has | 191 |
| abstract_inverted_index.its | 14 |
| abstract_inverted_index.our | 84, 137, 189, 213 |
| abstract_inverted_index.the | 41, 50, 76, 149, 163, 184, 195, 210, 223 |
| abstract_inverted_index.This | 103 |
| abstract_inverted_index.also | 161 |
| abstract_inverted_index.done | 105 |
| abstract_inverted_index.each | 79, 152 |
| abstract_inverted_index.have | 6 |
| abstract_inverted_index.into | 112 |
| abstract_inverted_index.more | 132 |
| abstract_inverted_index.past | 20 |
| abstract_inverted_index.that | 93, 122 |
| abstract_inverted_index.well | 25 |
| abstract_inverted_index.with | 166, 230 |
| abstract_inverted_index.North | 141 |
| abstract_inverted_index.apply | 136 |
| abstract_inverted_index.based | 182 |
| abstract_inverted_index.could | 60 |
| abstract_inverted_index.model | 111, 121 |
| abstract_inverted_index.novel | 214 |
| abstract_inverted_index.order | 71 |
| abstract_inverted_index.risk. | 30 |
| abstract_inverted_index.this, | 74 |
| abstract_inverted_index.where | 55 |
| abstract_inverted_index.which | 96 |
| abstract_inverted_index.across | 144, 203 |
| abstract_inverted_index.allows | 123 |
| abstract_inverted_index.assess | 170 |
| abstract_inverted_index.basins | 143 |
| abstract_inverted_index.causal | 133 |
| abstract_inverted_index.change | 181 |
| abstract_inverted_index.devise | 87 |
| abstract_inverted_index.driver | 80, 154 |
| abstract_inverted_index.ensure | 130 |
| abstract_inverted_index.events | 202 |
| abstract_inverted_index.future | 28, 238 |
| abstract_inverted_index.global | 53 |
| abstract_inverted_index.hybrid | 120 |
| abstract_inverted_index.index. | 187 |
| abstract_inverted_index.method | 215 |
| abstract_inverted_index.neural | 114 |
| abstract_inverted_index.recent | 33 |
| abstract_inverted_index.result | 61 |
| abstract_inverted_index.risks. | 240 |
| abstract_inverted_index.scales | 146 |
| abstract_inverted_index.address | 73 |
| abstract_inverted_index.capture | 194 |
| abstract_inverted_index.changes | 57 |
| abstract_inverted_index.climate | 180 |
| abstract_inverted_index.complex | 177 |
| abstract_inverted_index.context | 51 |
| abstract_inverted_index.crucial | 17 |
| abstract_inverted_index.deficit | 158 |
| abstract_inverted_index.defined | 185 |
| abstract_inverted_index.despite | 32 |
| abstract_inverted_index.diverse | 198 |
| abstract_inverted_index.drivers | 15, 42, 59, 168, 173, 200 |
| abstract_inverted_index.drought | 1, 29, 45, 172, 199, 219, 239 |
| abstract_inverted_index.events. | 69, 159 |
| abstract_inverted_index.explain | 95 |
| abstract_inverted_index.machine | 90 |
| abstract_inverted_index.managed | 192 |
| abstract_inverted_index.network | 115 |
| abstract_inverted_index.present | 22 |
| abstract_inverted_index.process | 220 |
| abstract_inverted_index.remains | 46 |
| abstract_inverted_index.results | 208 |
| abstract_inverted_index.thereby | 233 |
| abstract_inverted_index.American | 142 |
| abstract_inverted_index.However, | 31 |
| abstract_inverted_index.becoming | 175 |
| abstract_inverted_index.complex, | 67 |
| abstract_inverted_index.compound | 68, 167, 231 |
| abstract_inverted_index.creating | 117 |
| abstract_inverted_index.drivers, | 232 |
| abstract_inverted_index.droughts | 228 |
| abstract_inverted_index.elusive, | 47 |
| abstract_inverted_index.encoding | 107 |
| abstract_inverted_index.impacts, | 11 |
| abstract_inverted_index.learning | 91 |
| abstract_inverted_index.maintain | 126 |
| abstract_inverted_index.numerous | 140 |
| abstract_inverted_index.physical | 127 |
| abstract_inverted_index.quantify | 148 |
| abstract_inverted_index.regimes. | 206 |
| abstract_inverted_index.research | 34 |
| abstract_inverted_index.severity | 226 |
| abstract_inverted_index.societal | 8 |
| abstract_inverted_index.warming, | 54 |
| abstract_inverted_index.(negative | 2 |
| abstract_inverted_index.assessing | 27 |
| abstract_inverted_index.different | 204 |
| abstract_inverted_index.droughts, | 23 |
| abstract_inverted_index.ecosystem | 10 |
| abstract_inverted_index.framework | 92, 138, 190 |
| abstract_inverted_index.frequency | 65 |
| abstract_inverted_index.improving | 217 |
| abstract_inverted_index.increased | 64, 235 |
| abstract_inverted_index.potential | 153 |
| abstract_inverted_index.research, | 85 |
| abstract_inverted_index.variables | 98 |
| abstract_inverted_index.anomalies) | 4 |
| abstract_inverted_index.associated | 165, 229 |
| abstract_inverted_index.conceptual | 109 |
| abstract_inverted_index.contribute | 99 |
| abstract_inverted_index.especially | 222 |
| abstract_inverted_index.identified | 156 |
| abstract_inverted_index.mechanisms | 164, 224 |
| abstract_inverted_index.necessary. | 82 |
| abstract_inverted_index.streamflow | 3, 101, 157 |
| abstract_inverted_index.consistency | 128 |
| abstract_inverted_index.demonstrate | 209 |
| abstract_inverted_index.investigate | 162 |
| abstract_inverted_index.perspective | 39 |
| abstract_inverted_index.quantifying | 75 |
| abstract_inverted_index.significant | 7 |
| abstract_inverted_index.Hydrological | 0 |
| abstract_inverted_index.compoundness | 186 |
| abstract_inverted_index.contribution | 77, 150, 196 |
| abstract_inverted_index.facilitating | 234 |
| abstract_inverted_index.hydrological | 44, 110, 218 |
| abstract_inverted_index.increasingly | 176 |
| abstract_inverted_index.interpreting | 19 |
| abstract_inverted_index.multivariate | 38 |
| abstract_inverted_index.particularly | 48 |
| abstract_inverted_index.predictions. | 102 |
| abstract_inverted_index.preparedness | 236 |
| abstract_inverted_index.advancements, | 35 |
| abstract_inverted_index.architecture, | 116 |
| abstract_inverted_index.comprehensive | 37 |
| abstract_inverted_index.effectiveness | 211 |
| abstract_inverted_index.interpretable | 89 |
| abstract_inverted_index.understanding | 13 |
| abstract_inverted_index.distributional | 56 |
| abstract_inverted_index.spatiotemporal | 145 |
| abstract_inverted_index.understanding, | 221 |
| abstract_inverted_index.understanding. | 134 |
| abstract_inverted_index.physics-encoded | 119 |
| abstract_inverted_index. Overall, | 188 |
| abstract_inverted_index.hydroclimatological | 205 |
| abstract_inverted_index.hydrometeorological | 97 |
| cited_by_percentile_year | |
| corresponding_author_ids | https://openalex.org/A5048628032, https://openalex.org/A5019118021, https://openalex.org/A5071721504, https://openalex.org/A5081683556 |
| countries_distinct_count | 2 |
| institutions_distinct_count | 5 |
| corresponding_institution_ids | https://openalex.org/I4210118689, https://openalex.org/I4210154168, https://openalex.org/I76198965 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/13 |
| sustainable_development_goals[0].score | 0.5299999713897705 |
| sustainable_development_goals[0].display_name | Climate action |
| citation_normalized_percentile.value | 0.03155048 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |