Interpretable Net Load Forecasting Using Smooth Multiperiodic Features Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.2172/2283726
We consider the problem of forecasting net load over a horizon such as one day,\nusing a trailing window of past net load values as well as date and time. We focus\non three variations on this problem: point forecasts, marginal quantile forecasts,\nand generating conditional samples of the future value. We propose a method\nthat relies on linear regression using some custom engineered time-based features\nto capture multiple periodicities, such as daily, weekly, and seasonal, and their\ninteractions. Our proposed models are readily interpretable, and rely on efficient\nand reliable convex optimization [1] to fit. We illustrate our method on four years\nworth of hourly net load data, comparing predictions made with various subsets of\nthe features.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.2172/2283726
- OA Status
- green
- Cited By
- 2
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4391521032
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4391521032Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.2172/2283726Digital Object Identifier
- Title
-
Interpretable Net Load Forecasting Using Smooth Multiperiodic FeaturesWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-01-30Full publication date if available
- Authors
-
Mehmet Öğüt, Bennet Meyers, Stephen BoydList of authors in order
- Landing page
-
https://doi.org/10.2172/2283726Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://www.osti.gov/biblio/2283726Direct OA link when available
- Concepts
-
Computer science, Net (polyhedron), Artificial intelligence, Real-time computing, Mathematics, GeometryTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
2Total citation count in OpenAlex
- Citations by year (recent)
-
2024: 2Per-year citation counts (last 5 years)
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4391521032 |
|---|---|
| doi | https://doi.org/10.2172/2283726 |
| ids.doi | https://doi.org/10.2172/2283726 |
| ids.openalex | https://openalex.org/W4391521032 |
| fwci | 0.73833695 |
| type | article |
| title | Interpretable Net Load Forecasting Using Smooth Multiperiodic Features |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11052 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.9192000031471252 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2208 |
| topics[0].subfield.display_name | Electrical and Electronic Engineering |
| topics[0].display_name | Energy Load and Power Forecasting |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.5905115008354187 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C14166107 |
| concepts[1].level | 2 |
| concepts[1].score | 0.513850748538971 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q253829 |
| concepts[1].display_name | Net (polyhedron) |
| concepts[2].id | https://openalex.org/C154945302 |
| concepts[2].level | 1 |
| concepts[2].score | 0.3627352714538574 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[2].display_name | Artificial intelligence |
| concepts[3].id | https://openalex.org/C79403827 |
| concepts[3].level | 1 |
| concepts[3].score | 0.3203354775905609 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q3988 |
| concepts[3].display_name | Real-time computing |
| concepts[4].id | https://openalex.org/C33923547 |
| concepts[4].level | 0 |
| concepts[4].score | 0.11255708336830139 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[4].display_name | Mathematics |
| concepts[5].id | https://openalex.org/C2524010 |
| concepts[5].level | 1 |
| concepts[5].score | 0.0 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q8087 |
| concepts[5].display_name | Geometry |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.5905115008354187 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/net |
| keywords[1].score | 0.513850748538971 |
| keywords[1].display_name | Net (polyhedron) |
| keywords[2].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[2].score | 0.3627352714538574 |
| keywords[2].display_name | Artificial intelligence |
| keywords[3].id | https://openalex.org/keywords/real-time-computing |
| keywords[3].score | 0.3203354775905609 |
| keywords[3].display_name | Real-time computing |
| keywords[4].id | https://openalex.org/keywords/mathematics |
| keywords[4].score | 0.11255708336830139 |
| keywords[4].display_name | Mathematics |
| language | en |
| locations[0].id | doi:10.2172/2283726 |
| locations[0].is_oa | False |
| locations[0].source | |
| locations[0].license | |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | proceedings-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Government Energy Summit 2024 Jan 29-30, 2024 https://energy.stanford.edu/government-energy-summit-2024 |
| locations[0].landing_page_url | https://doi.org/10.2172/2283726 |
| locations[1].id | pmh:oai:osti.gov:2283726 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306402487 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | OSTI OAI (U.S. Department of Energy Office of Scientific and Technical Information) |
| locations[1].source.host_organization | https://openalex.org/I139351228 |
| locations[1].source.host_organization_name | Office of Scientific and Technical Information |
| locations[1].source.host_organization_lineage | https://openalex.org/I139351228 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://www.osti.gov/biblio/2283726 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5065550868 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-7142-6899 |
| authorships[0].author.display_name | Mehmet Öğüt |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Mehmet Ogut |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5079354826 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-4089-0744 |
| authorships[1].author.display_name | Bennet Meyers |
| authorships[1].affiliations[0].raw_affiliation_string | AED-GISMO |
| authorships[1].affiliations[1].raw_affiliation_string | Energy Sciences Mgmt Dept; AED-GISMO |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Bennet Meyers |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | AED-GISMO, Energy Sciences Mgmt Dept; AED-GISMO |
| authorships[2].author.id | https://openalex.org/A5011176205 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-8353-6000 |
| authorships[2].author.display_name | Stephen Boyd |
| authorships[2].countries | US |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I97018004 |
| authorships[2].affiliations[0].raw_affiliation_string | Department of Electrical Engineering, Stanford University |
| authorships[2].institutions[0].id | https://openalex.org/I97018004 |
| authorships[2].institutions[0].ror | https://ror.org/00f54p054 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I97018004 |
| authorships[2].institutions[0].country_code | US |
| authorships[2].institutions[0].display_name | Stanford University |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Stephen Boyd |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Department of Electrical Engineering, Stanford University |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.osti.gov/biblio/2283726 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Interpretable Net Load Forecasting Using Smooth Multiperiodic Features |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11052 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.9192000031471252 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2208 |
| primary_topic.subfield.display_name | Electrical and Electronic Engineering |
| primary_topic.display_name | Energy Load and Power Forecasting |
| related_works | https://openalex.org/W2748952813, https://openalex.org/W2390279801, https://openalex.org/W2358668433, https://openalex.org/W2376932109, https://openalex.org/W2001405890, https://openalex.org/W2382290278, https://openalex.org/W2478288626, https://openalex.org/W2350741829, https://openalex.org/W2530322880, https://openalex.org/W1596801655 |
| cited_by_count | 2 |
| counts_by_year[0].year | 2024 |
| counts_by_year[0].cited_by_count | 2 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:osti.gov:2283726 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306402487 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | OSTI OAI (U.S. Department of Energy Office of Scientific and Technical Information) |
| best_oa_location.source.host_organization | https://openalex.org/I139351228 |
| best_oa_location.source.host_organization_name | Office of Scientific and Technical Information |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I139351228 |
| best_oa_location.license | |
| best_oa_location.pdf_url | |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | https://www.osti.gov/biblio/2283726 |
| primary_location.id | doi:10.2172/2283726 |
| primary_location.is_oa | False |
| primary_location.source | |
| primary_location.license | |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | proceedings-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Government Energy Summit 2024 Jan 29-30, 2024 https://energy.stanford.edu/government-energy-summit-2024 |
| primary_location.landing_page_url | https://doi.org/10.2172/2283726 |
| publication_date | 2024-01-30 |
| publication_year | 2024 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 9, 15, 50 |
| abstract_inverted_index.We | 0, 29, 48, 89 |
| abstract_inverted_index.as | 12, 23, 25, 66 |
| abstract_inverted_index.of | 4, 18, 44, 96 |
| abstract_inverted_index.on | 33, 53, 81, 93 |
| abstract_inverted_index.to | 87 |
| abstract_inverted_index.Our | 73 |
| abstract_inverted_index.[1] | 86 |
| abstract_inverted_index.and | 27, 69, 71, 79 |
| abstract_inverted_index.are | 76 |
| abstract_inverted_index.net | 6, 20, 98 |
| abstract_inverted_index.one | 13 |
| abstract_inverted_index.our | 91 |
| abstract_inverted_index.the | 2, 45 |
| abstract_inverted_index.date | 26 |
| abstract_inverted_index.fit. | 88 |
| abstract_inverted_index.four | 94 |
| abstract_inverted_index.load | 7, 21, 99 |
| abstract_inverted_index.made | 103 |
| abstract_inverted_index.over | 8 |
| abstract_inverted_index.past | 19 |
| abstract_inverted_index.rely | 80 |
| abstract_inverted_index.some | 57 |
| abstract_inverted_index.such | 11, 65 |
| abstract_inverted_index.this | 34 |
| abstract_inverted_index.well | 24 |
| abstract_inverted_index.with | 104 |
| abstract_inverted_index.data, | 100 |
| abstract_inverted_index.point | 36 |
| abstract_inverted_index.three | 31 |
| abstract_inverted_index.time. | 28 |
| abstract_inverted_index.using | 56 |
| abstract_inverted_index.convex | 84 |
| abstract_inverted_index.custom | 58 |
| abstract_inverted_index.daily, | 67 |
| abstract_inverted_index.future | 46 |
| abstract_inverted_index.hourly | 97 |
| abstract_inverted_index.linear | 54 |
| abstract_inverted_index.method | 92 |
| abstract_inverted_index.models | 75 |
| abstract_inverted_index.relies | 52 |
| abstract_inverted_index.value. | 47 |
| abstract_inverted_index.values | 22 |
| abstract_inverted_index.window | 17 |
| abstract_inverted_index.capture | 62 |
| abstract_inverted_index.horizon | 10 |
| abstract_inverted_index.of\nthe | 107 |
| abstract_inverted_index.problem | 3 |
| abstract_inverted_index.propose | 49 |
| abstract_inverted_index.readily | 77 |
| abstract_inverted_index.samples | 43 |
| abstract_inverted_index.subsets | 106 |
| abstract_inverted_index.various | 105 |
| abstract_inverted_index.weekly, | 68 |
| abstract_inverted_index.consider | 1 |
| abstract_inverted_index.marginal | 38 |
| abstract_inverted_index.multiple | 63 |
| abstract_inverted_index.problem: | 35 |
| abstract_inverted_index.proposed | 74 |
| abstract_inverted_index.quantile | 39 |
| abstract_inverted_index.reliable | 83 |
| abstract_inverted_index.trailing | 16 |
| abstract_inverted_index.comparing | 101 |
| abstract_inverted_index.features. | 108 |
| abstract_inverted_index.focus\non | 30 |
| abstract_inverted_index.seasonal, | 70 |
| abstract_inverted_index.engineered | 59 |
| abstract_inverted_index.forecasts, | 37 |
| abstract_inverted_index.generating | 41 |
| abstract_inverted_index.illustrate | 90 |
| abstract_inverted_index.regression | 55 |
| abstract_inverted_index.time-based | 60 |
| abstract_inverted_index.variations | 32 |
| abstract_inverted_index.conditional | 42 |
| abstract_inverted_index.day,\nusing | 14 |
| abstract_inverted_index.forecasting | 5 |
| abstract_inverted_index.predictions | 102 |
| abstract_inverted_index.features\nto | 61 |
| abstract_inverted_index.method\nthat | 51 |
| abstract_inverted_index.optimization | 85 |
| abstract_inverted_index.years\nworth | 95 |
| abstract_inverted_index.efficient\nand | 82 |
| abstract_inverted_index.interpretable, | 78 |
| abstract_inverted_index.periodicities, | 64 |
| abstract_inverted_index.forecasts,\nand | 40 |
| abstract_inverted_index.their\ninteractions. | 72 |
| cited_by_percentile_year.max | 96 |
| cited_by_percentile_year.min | 94 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 3 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/13 |
| sustainable_development_goals[0].score | 0.41999998688697815 |
| sustainable_development_goals[0].display_name | Climate action |
| citation_normalized_percentile.value | 0.64378167 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |