Interpreting Black-box Machine Learning Models for High Dimensional Datasets Article Swipe
YOU?
·
· 2022
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2208.13405
Deep neural networks (DNNs) have been shown to outperform traditional machine learning algorithms in a broad variety of application domains due to their effectiveness in modeling complex problems and handling high-dimensional datasets. Many real-life datasets, however, are of increasingly high dimensionality, where a large number of features may be irrelevant for both supervised and unsupervised learning tasks. The inclusion of such features would not only introduce unwanted noise but also increase computational complexity. Furthermore, due to high non-linearity and dependency among a large number of features, DNN models tend to be unavoidably opaque and perceived as black-box methods because of their not well-understood internal functioning. Their algorithmic complexity is often simply beyond the capacities of humans to understand the interplay among myriads of hyperparameters. A well-interpretable model can identify statistically significant features and explain the way they affect the model's outcome. In this paper, we propose an efficient method to improve the interpretability of black-box models for classification tasks in the case of high-dimensional datasets. First, we train a black-box model on a high-dimensional dataset to learn the embeddings on which the classification is performed. To decompose the inner working principles of the black-box model and to identify top-k important features, we employ different probing and perturbing techniques. We then approximate the behavior of the black-box model by means of an interpretable surrogate model on the top-k feature space. Finally, we derive decision rules and local explanations from the surrogate model to explain individual decisions. Our approach outperforms state-of-the-art methods like TabNet and XGboost when tested on different datasets with varying dimensionality between 50 and 20,000 w.r.t metrics and explainability.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2208.13405
- https://arxiv.org/pdf/2208.13405
- OA Status
- green
- Cited By
- 2
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4293827875
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4293827875Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2208.13405Digital Object Identifier
- Title
-
Interpreting Black-box Machine Learning Models for High Dimensional DatasetsWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2022Year of publication
- Publication date
-
2022-08-29Full publication date if available
- Authors
-
Md. Rezaul Karim, Md Shajalal, Alex Graß, Till Döhmen, Sisay Adugna Chala, Christian Beecks, Stefan DeckerList of authors in order
- Landing page
-
https://arxiv.org/abs/2208.13405Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2208.13405Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2208.13405Direct OA link when available
- Concepts
-
Interpretability, Machine learning, Black box, Computer science, Artificial intelligence, Curse of dimensionality, Feature (linguistics), Hyperparameter, Deep learning, Linguistics, PhilosophyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
2Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1, 2024: 1Per-year citation counts (last 5 years)
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4293827875 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2208.13405 |
| ids.doi | https://doi.org/10.48550/arxiv.2208.13405 |
| ids.openalex | https://openalex.org/W4293827875 |
| fwci | 0.39159764 |
| type | preprint |
| title | Interpreting Black-box Machine Learning Models for High Dimensional Datasets |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T12026 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9983999729156494 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Explainable Artificial Intelligence (XAI) |
| topics[1].id | https://openalex.org/T12535 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9943000078201294 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | Machine Learning and Data Classification |
| topics[2].id | https://openalex.org/T11689 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9865999817848206 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1702 |
| topics[2].subfield.display_name | Artificial Intelligence |
| topics[2].display_name | Adversarial Robustness in Machine Learning |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C2781067378 |
| concepts[0].level | 2 |
| concepts[0].score | 0.8856439590454102 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q17027399 |
| concepts[0].display_name | Interpretability |
| concepts[1].id | https://openalex.org/C119857082 |
| concepts[1].level | 1 |
| concepts[1].score | 0.7462531328201294 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[1].display_name | Machine learning |
| concepts[2].id | https://openalex.org/C94966114 |
| concepts[2].level | 2 |
| concepts[2].score | 0.7372039556503296 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q29256 |
| concepts[2].display_name | Black box |
| concepts[3].id | https://openalex.org/C41008148 |
| concepts[3].level | 0 |
| concepts[3].score | 0.7149554491043091 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[3].display_name | Computer science |
| concepts[4].id | https://openalex.org/C154945302 |
| concepts[4].level | 1 |
| concepts[4].score | 0.7024780511856079 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[4].display_name | Artificial intelligence |
| concepts[5].id | https://openalex.org/C111030470 |
| concepts[5].level | 2 |
| concepts[5].score | 0.537352442741394 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q1430460 |
| concepts[5].display_name | Curse of dimensionality |
| concepts[6].id | https://openalex.org/C2776401178 |
| concepts[6].level | 2 |
| concepts[6].score | 0.5018095970153809 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q12050496 |
| concepts[6].display_name | Feature (linguistics) |
| concepts[7].id | https://openalex.org/C8642999 |
| concepts[7].level | 2 |
| concepts[7].score | 0.4629358649253845 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q4171168 |
| concepts[7].display_name | Hyperparameter |
| concepts[8].id | https://openalex.org/C108583219 |
| concepts[8].level | 2 |
| concepts[8].score | 0.4148060381412506 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q197536 |
| concepts[8].display_name | Deep learning |
| concepts[9].id | https://openalex.org/C41895202 |
| concepts[9].level | 1 |
| concepts[9].score | 0.0 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q8162 |
| concepts[9].display_name | Linguistics |
| concepts[10].id | https://openalex.org/C138885662 |
| concepts[10].level | 0 |
| concepts[10].score | 0.0 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q5891 |
| concepts[10].display_name | Philosophy |
| keywords[0].id | https://openalex.org/keywords/interpretability |
| keywords[0].score | 0.8856439590454102 |
| keywords[0].display_name | Interpretability |
| keywords[1].id | https://openalex.org/keywords/machine-learning |
| keywords[1].score | 0.7462531328201294 |
| keywords[1].display_name | Machine learning |
| keywords[2].id | https://openalex.org/keywords/black-box |
| keywords[2].score | 0.7372039556503296 |
| keywords[2].display_name | Black box |
| keywords[3].id | https://openalex.org/keywords/computer-science |
| keywords[3].score | 0.7149554491043091 |
| keywords[3].display_name | Computer science |
| keywords[4].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[4].score | 0.7024780511856079 |
| keywords[4].display_name | Artificial intelligence |
| keywords[5].id | https://openalex.org/keywords/curse-of-dimensionality |
| keywords[5].score | 0.537352442741394 |
| keywords[5].display_name | Curse of dimensionality |
| keywords[6].id | https://openalex.org/keywords/feature |
| keywords[6].score | 0.5018095970153809 |
| keywords[6].display_name | Feature (linguistics) |
| keywords[7].id | https://openalex.org/keywords/hyperparameter |
| keywords[7].score | 0.4629358649253845 |
| keywords[7].display_name | Hyperparameter |
| keywords[8].id | https://openalex.org/keywords/deep-learning |
| keywords[8].score | 0.4148060381412506 |
| keywords[8].display_name | Deep learning |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2208.13405 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2208.13405 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2208.13405 |
| locations[1].id | doi:10.48550/arxiv.2208.13405 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article-journal |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2208.13405 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5060060337 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-6207-3542 |
| authorships[0].author.display_name | Md. Rezaul Karim |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Karim, Md. Rezaul |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5049561647 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-9011-708X |
| authorships[1].author.display_name | Md Shajalal |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Shajalal, Md. |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5014479971 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Alex Graß |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Graß, Alex |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5005496964 |
| authorships[3].author.orcid | https://orcid.org/0000-0001-7483-0099 |
| authorships[3].author.display_name | Till Döhmen |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Döhmen, Till |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5054441882 |
| authorships[4].author.orcid | https://orcid.org/0000-0003-2339-5394 |
| authorships[4].author.display_name | Sisay Adugna Chala |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Chala, Sisay Adugna |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5039809923 |
| authorships[5].author.orcid | https://orcid.org/0009-0000-9028-629X |
| authorships[5].author.display_name | Christian Beecks |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Beecks, Christian |
| authorships[5].is_corresponding | False |
| authorships[6].author.id | https://openalex.org/A5071104283 |
| authorships[6].author.orcid | https://orcid.org/0000-0001-6324-7164 |
| authorships[6].author.display_name | Stefan Decker |
| authorships[6].author_position | last |
| authorships[6].raw_author_name | Decker, Stefan |
| authorships[6].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2208.13405 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Interpreting Black-box Machine Learning Models for High Dimensional Datasets |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T12026 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9983999729156494 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Explainable Artificial Intelligence (XAI) |
| related_works | https://openalex.org/W2797441709, https://openalex.org/W2346578521, https://openalex.org/W4283692230, https://openalex.org/W4297660007, https://openalex.org/W2886918272, https://openalex.org/W4387589990, https://openalex.org/W3203722024, https://openalex.org/W2943982549, https://openalex.org/W3101055019, https://openalex.org/W4241566321 |
| cited_by_count | 2 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 1 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2208.13405 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2208.13405 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2208.13405 |
| primary_location.id | pmh:oai:arXiv.org:2208.13405 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2208.13405 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2208.13405 |
| publication_date | 2022-08-29 |
| publication_year | 2022 |
| referenced_works_count | 0 |
| abstract_inverted_index.A | 124 |
| abstract_inverted_index.a | 14, 42, 81, 168, 172 |
| abstract_inverted_index.50 | 263 |
| abstract_inverted_index.In | 141 |
| abstract_inverted_index.To | 185 |
| abstract_inverted_index.We | 208 |
| abstract_inverted_index.an | 146, 220 |
| abstract_inverted_index.as | 95 |
| abstract_inverted_index.be | 48, 90 |
| abstract_inverted_index.by | 217 |
| abstract_inverted_index.in | 13, 24, 159 |
| abstract_inverted_index.is | 108, 183 |
| abstract_inverted_index.of | 17, 37, 45, 59, 84, 99, 114, 122, 153, 162, 191, 213, 219 |
| abstract_inverted_index.on | 171, 179, 224, 256 |
| abstract_inverted_index.to | 7, 21, 75, 89, 116, 149, 175, 196, 241 |
| abstract_inverted_index.we | 144, 166, 201, 230 |
| abstract_inverted_index.DNN | 86 |
| abstract_inverted_index.Our | 245 |
| abstract_inverted_index.The | 57 |
| abstract_inverted_index.and | 28, 53, 78, 93, 132, 195, 205, 234, 252, 264, 268 |
| abstract_inverted_index.are | 36 |
| abstract_inverted_index.but | 68 |
| abstract_inverted_index.can | 127 |
| abstract_inverted_index.due | 20, 74 |
| abstract_inverted_index.for | 50, 156 |
| abstract_inverted_index.may | 47 |
| abstract_inverted_index.not | 63, 101 |
| abstract_inverted_index.the | 112, 118, 134, 138, 151, 160, 177, 181, 187, 192, 211, 214, 225, 238 |
| abstract_inverted_index.way | 135 |
| abstract_inverted_index.Deep | 0 |
| abstract_inverted_index.Many | 32 |
| abstract_inverted_index.also | 69 |
| abstract_inverted_index.been | 5 |
| abstract_inverted_index.both | 51 |
| abstract_inverted_index.case | 161 |
| abstract_inverted_index.from | 237 |
| abstract_inverted_index.have | 4 |
| abstract_inverted_index.high | 39, 76 |
| abstract_inverted_index.like | 250 |
| abstract_inverted_index.only | 64 |
| abstract_inverted_index.such | 60 |
| abstract_inverted_index.tend | 88 |
| abstract_inverted_index.then | 209 |
| abstract_inverted_index.they | 136 |
| abstract_inverted_index.this | 142 |
| abstract_inverted_index.when | 254 |
| abstract_inverted_index.with | 259 |
| abstract_inverted_index.Their | 105 |
| abstract_inverted_index.among | 80, 120 |
| abstract_inverted_index.broad | 15 |
| abstract_inverted_index.inner | 188 |
| abstract_inverted_index.large | 43, 82 |
| abstract_inverted_index.learn | 176 |
| abstract_inverted_index.local | 235 |
| abstract_inverted_index.means | 218 |
| abstract_inverted_index.model | 126, 170, 194, 216, 223, 240 |
| abstract_inverted_index.noise | 67 |
| abstract_inverted_index.often | 109 |
| abstract_inverted_index.rules | 233 |
| abstract_inverted_index.shown | 6 |
| abstract_inverted_index.tasks | 158 |
| abstract_inverted_index.their | 22, 100 |
| abstract_inverted_index.top-k | 198, 226 |
| abstract_inverted_index.train | 167 |
| abstract_inverted_index.w.r.t | 266 |
| abstract_inverted_index.where | 41 |
| abstract_inverted_index.which | 180 |
| abstract_inverted_index.would | 62 |
| abstract_inverted_index.(DNNs) | 3 |
| abstract_inverted_index.20,000 | 265 |
| abstract_inverted_index.First, | 165 |
| abstract_inverted_index.TabNet | 251 |
| abstract_inverted_index.affect | 137 |
| abstract_inverted_index.beyond | 111 |
| abstract_inverted_index.derive | 231 |
| abstract_inverted_index.employ | 202 |
| abstract_inverted_index.humans | 115 |
| abstract_inverted_index.method | 148 |
| abstract_inverted_index.models | 87, 155 |
| abstract_inverted_index.neural | 1 |
| abstract_inverted_index.number | 44, 83 |
| abstract_inverted_index.opaque | 92 |
| abstract_inverted_index.paper, | 143 |
| abstract_inverted_index.simply | 110 |
| abstract_inverted_index.space. | 228 |
| abstract_inverted_index.tasks. | 56 |
| abstract_inverted_index.tested | 255 |
| abstract_inverted_index.XGboost | 253 |
| abstract_inverted_index.because | 98 |
| abstract_inverted_index.between | 262 |
| abstract_inverted_index.complex | 26 |
| abstract_inverted_index.dataset | 174 |
| abstract_inverted_index.domains | 19 |
| abstract_inverted_index.explain | 133, 242 |
| abstract_inverted_index.feature | 227 |
| abstract_inverted_index.improve | 150 |
| abstract_inverted_index.machine | 10 |
| abstract_inverted_index.methods | 97, 249 |
| abstract_inverted_index.metrics | 267 |
| abstract_inverted_index.model's | 139 |
| abstract_inverted_index.myriads | 121 |
| abstract_inverted_index.probing | 204 |
| abstract_inverted_index.propose | 145 |
| abstract_inverted_index.variety | 16 |
| abstract_inverted_index.varying | 260 |
| abstract_inverted_index.working | 189 |
| abstract_inverted_index.Finally, | 229 |
| abstract_inverted_index.approach | 246 |
| abstract_inverted_index.behavior | 212 |
| abstract_inverted_index.datasets | 258 |
| abstract_inverted_index.decision | 232 |
| abstract_inverted_index.features | 46, 61, 131 |
| abstract_inverted_index.handling | 29 |
| abstract_inverted_index.however, | 35 |
| abstract_inverted_index.identify | 128, 197 |
| abstract_inverted_index.increase | 70 |
| abstract_inverted_index.internal | 103 |
| abstract_inverted_index.learning | 11, 55 |
| abstract_inverted_index.modeling | 25 |
| abstract_inverted_index.networks | 2 |
| abstract_inverted_index.outcome. | 140 |
| abstract_inverted_index.problems | 27 |
| abstract_inverted_index.unwanted | 66 |
| abstract_inverted_index.black-box | 96, 154, 169, 193, 215 |
| abstract_inverted_index.datasets, | 34 |
| abstract_inverted_index.datasets. | 31, 164 |
| abstract_inverted_index.decompose | 186 |
| abstract_inverted_index.different | 203, 257 |
| abstract_inverted_index.efficient | 147 |
| abstract_inverted_index.features, | 85, 200 |
| abstract_inverted_index.important | 199 |
| abstract_inverted_index.inclusion | 58 |
| abstract_inverted_index.interplay | 119 |
| abstract_inverted_index.introduce | 65 |
| abstract_inverted_index.perceived | 94 |
| abstract_inverted_index.real-life | 33 |
| abstract_inverted_index.surrogate | 222, 239 |
| abstract_inverted_index.algorithms | 12 |
| abstract_inverted_index.capacities | 113 |
| abstract_inverted_index.complexity | 107 |
| abstract_inverted_index.decisions. | 244 |
| abstract_inverted_index.dependency | 79 |
| abstract_inverted_index.embeddings | 178 |
| abstract_inverted_index.individual | 243 |
| abstract_inverted_index.irrelevant | 49 |
| abstract_inverted_index.outperform | 8 |
| abstract_inverted_index.performed. | 184 |
| abstract_inverted_index.perturbing | 206 |
| abstract_inverted_index.principles | 190 |
| abstract_inverted_index.supervised | 52 |
| abstract_inverted_index.understand | 117 |
| abstract_inverted_index.algorithmic | 106 |
| abstract_inverted_index.application | 18 |
| abstract_inverted_index.approximate | 210 |
| abstract_inverted_index.complexity. | 72 |
| abstract_inverted_index.outperforms | 247 |
| abstract_inverted_index.significant | 130 |
| abstract_inverted_index.techniques. | 207 |
| abstract_inverted_index.traditional | 9 |
| abstract_inverted_index.unavoidably | 91 |
| abstract_inverted_index.Furthermore, | 73 |
| abstract_inverted_index.explanations | 236 |
| abstract_inverted_index.functioning. | 104 |
| abstract_inverted_index.increasingly | 38 |
| abstract_inverted_index.unsupervised | 54 |
| abstract_inverted_index.computational | 71 |
| abstract_inverted_index.effectiveness | 23 |
| abstract_inverted_index.interpretable | 221 |
| abstract_inverted_index.non-linearity | 77 |
| abstract_inverted_index.statistically | 129 |
| abstract_inverted_index.classification | 157, 182 |
| abstract_inverted_index.dimensionality | 261 |
| abstract_inverted_index.dimensionality, | 40 |
| abstract_inverted_index.explainability. | 269 |
| abstract_inverted_index.well-understood | 102 |
| abstract_inverted_index.high-dimensional | 30, 163, 173 |
| abstract_inverted_index.hyperparameters. | 123 |
| abstract_inverted_index.interpretability | 152 |
| abstract_inverted_index.state-of-the-art | 248 |
| abstract_inverted_index.well-interpretable | 125 |
| cited_by_percentile_year.max | 95 |
| cited_by_percentile_year.min | 90 |
| countries_distinct_count | 0 |
| institutions_distinct_count | 7 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/16 |
| sustainable_development_goals[0].score | 0.6000000238418579 |
| sustainable_development_goals[0].display_name | Peace, Justice and strong institutions |
| citation_normalized_percentile.value | 0.62592098 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |