Interval Type-2 Fuzzy Neural Network Based Cascade Predictive Control of Superheated Steam Temperature Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.1088/1742-6596/2860/1/012053
The superheated steam temperature (SST) suffers from complex dynamic characteristics such as nonlinearity and large time delay. To deal with the negative effects, this paper proposes a cascade predictive control strategy (CPC-PI) based on interval type-2 fuzzy neural network (IT2FNN) to improve the performance of SST. First, this paper proposes the IT2FNN model for modeling the SST model. And then on the basis the local linearized IT2FNN model, the CPC-PI strategy is designed. In the following, fuzzy self-regulation of the weight factor in the CPCPI is carried out to further improve the dynamic response speed and stability of SST. Finally, the comparative simulations verify that the IT2FNN-based CPC-PI control strategy with self-regulated weight factor is superior to the PI-PI control strategy and the IT2FNN-based CPC-PI control strategy with fixed weight factor.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1088/1742-6596/2860/1/012053
- OA Status
- diamond
- References
- 14
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4403381720
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4403381720Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1088/1742-6596/2860/1/012053Digital Object Identifier
- Title
-
Interval Type-2 Fuzzy Neural Network Based Cascade Predictive Control of Superheated Steam TemperatureWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-10-01Full publication date if available
- Authors
-
Maoxuan Wang, Hanming Wu, Yuankai Shao, Lingwei Meng, Zhenguo Li, Tianyou WangList of authors in order
- Landing page
-
https://doi.org/10.1088/1742-6596/2860/1/012053Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
diamondOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.1088/1742-6596/2860/1/012053Direct OA link when available
- Concepts
-
Superheated steam, Cascade, Artificial neural network, Interval (graph theory), Control theory (sociology), Model predictive control, Computer science, Boiler (water heating), Mathematics, Control (management), Artificial intelligence, Engineering, Chemistry, Chromatography, Waste management, CombinatoricsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
14Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4403381720 |
|---|---|
| doi | https://doi.org/10.1088/1742-6596/2860/1/012053 |
| ids.doi | https://doi.org/10.1088/1742-6596/2860/1/012053 |
| ids.openalex | https://openalex.org/W4403381720 |
| fwci | 0.0 |
| type | article |
| title | Interval Type-2 Fuzzy Neural Network Based Cascade Predictive Control of Superheated Steam Temperature |
| biblio.issue | 1 |
| biblio.volume | 2860 |
| biblio.last_page | 012053 |
| biblio.first_page | 012053 |
| topics[0].id | https://openalex.org/T10791 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.9979000091552734 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2207 |
| topics[0].subfield.display_name | Control and Systems Engineering |
| topics[0].display_name | Advanced Control Systems Optimization |
| topics[1].id | https://openalex.org/T13717 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.9936000108718872 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2207 |
| topics[1].subfield.display_name | Control and Systems Engineering |
| topics[1].display_name | Advanced Algorithms and Applications |
| topics[2].id | https://openalex.org/T10876 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.987500011920929 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2207 |
| topics[2].subfield.display_name | Control and Systems Engineering |
| topics[2].display_name | Fault Detection and Control Systems |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C192811776 |
| concepts[0].level | 3 |
| concepts[0].score | 0.8013285994529724 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q2164304 |
| concepts[0].display_name | Superheated steam |
| concepts[1].id | https://openalex.org/C34146451 |
| concepts[1].level | 2 |
| concepts[1].score | 0.7226057648658752 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q5048094 |
| concepts[1].display_name | Cascade |
| concepts[2].id | https://openalex.org/C50644808 |
| concepts[2].level | 2 |
| concepts[2].score | 0.5528306365013123 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q192776 |
| concepts[2].display_name | Artificial neural network |
| concepts[3].id | https://openalex.org/C2778067643 |
| concepts[3].level | 2 |
| concepts[3].score | 0.516472339630127 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q166507 |
| concepts[3].display_name | Interval (graph theory) |
| concepts[4].id | https://openalex.org/C47446073 |
| concepts[4].level | 3 |
| concepts[4].score | 0.5131378769874573 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q5165890 |
| concepts[4].display_name | Control theory (sociology) |
| concepts[5].id | https://openalex.org/C172205157 |
| concepts[5].level | 3 |
| concepts[5].score | 0.4307313859462738 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q1782962 |
| concepts[5].display_name | Model predictive control |
| concepts[6].id | https://openalex.org/C41008148 |
| concepts[6].level | 0 |
| concepts[6].score | 0.3764202892780304 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[6].display_name | Computer science |
| concepts[7].id | https://openalex.org/C2780013297 |
| concepts[7].level | 2 |
| concepts[7].score | 0.32440364360809326 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q19596153 |
| concepts[7].display_name | Boiler (water heating) |
| concepts[8].id | https://openalex.org/C33923547 |
| concepts[8].level | 0 |
| concepts[8].score | 0.2585541009902954 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[8].display_name | Mathematics |
| concepts[9].id | https://openalex.org/C2775924081 |
| concepts[9].level | 2 |
| concepts[9].score | 0.25138235092163086 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q55608371 |
| concepts[9].display_name | Control (management) |
| concepts[10].id | https://openalex.org/C154945302 |
| concepts[10].level | 1 |
| concepts[10].score | 0.23630866408348083 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[10].display_name | Artificial intelligence |
| concepts[11].id | https://openalex.org/C127413603 |
| concepts[11].level | 0 |
| concepts[11].score | 0.2259015440940857 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q11023 |
| concepts[11].display_name | Engineering |
| concepts[12].id | https://openalex.org/C185592680 |
| concepts[12].level | 0 |
| concepts[12].score | 0.21811556816101074 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q2329 |
| concepts[12].display_name | Chemistry |
| concepts[13].id | https://openalex.org/C43617362 |
| concepts[13].level | 1 |
| concepts[13].score | 0.11066260933876038 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q170050 |
| concepts[13].display_name | Chromatography |
| concepts[14].id | https://openalex.org/C548081761 |
| concepts[14].level | 1 |
| concepts[14].score | 0.052425235509872437 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q180388 |
| concepts[14].display_name | Waste management |
| concepts[15].id | https://openalex.org/C114614502 |
| concepts[15].level | 1 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q76592 |
| concepts[15].display_name | Combinatorics |
| keywords[0].id | https://openalex.org/keywords/superheated-steam |
| keywords[0].score | 0.8013285994529724 |
| keywords[0].display_name | Superheated steam |
| keywords[1].id | https://openalex.org/keywords/cascade |
| keywords[1].score | 0.7226057648658752 |
| keywords[1].display_name | Cascade |
| keywords[2].id | https://openalex.org/keywords/artificial-neural-network |
| keywords[2].score | 0.5528306365013123 |
| keywords[2].display_name | Artificial neural network |
| keywords[3].id | https://openalex.org/keywords/interval |
| keywords[3].score | 0.516472339630127 |
| keywords[3].display_name | Interval (graph theory) |
| keywords[4].id | https://openalex.org/keywords/control-theory |
| keywords[4].score | 0.5131378769874573 |
| keywords[4].display_name | Control theory (sociology) |
| keywords[5].id | https://openalex.org/keywords/model-predictive-control |
| keywords[5].score | 0.4307313859462738 |
| keywords[5].display_name | Model predictive control |
| keywords[6].id | https://openalex.org/keywords/computer-science |
| keywords[6].score | 0.3764202892780304 |
| keywords[6].display_name | Computer science |
| keywords[7].id | https://openalex.org/keywords/boiler |
| keywords[7].score | 0.32440364360809326 |
| keywords[7].display_name | Boiler (water heating) |
| keywords[8].id | https://openalex.org/keywords/mathematics |
| keywords[8].score | 0.2585541009902954 |
| keywords[8].display_name | Mathematics |
| keywords[9].id | https://openalex.org/keywords/control |
| keywords[9].score | 0.25138235092163086 |
| keywords[9].display_name | Control (management) |
| keywords[10].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[10].score | 0.23630866408348083 |
| keywords[10].display_name | Artificial intelligence |
| keywords[11].id | https://openalex.org/keywords/engineering |
| keywords[11].score | 0.2259015440940857 |
| keywords[11].display_name | Engineering |
| keywords[12].id | https://openalex.org/keywords/chemistry |
| keywords[12].score | 0.21811556816101074 |
| keywords[12].display_name | Chemistry |
| keywords[13].id | https://openalex.org/keywords/chromatography |
| keywords[13].score | 0.11066260933876038 |
| keywords[13].display_name | Chromatography |
| keywords[14].id | https://openalex.org/keywords/waste-management |
| keywords[14].score | 0.052425235509872437 |
| keywords[14].display_name | Waste management |
| language | en |
| locations[0].id | doi:10.1088/1742-6596/2860/1/012053 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210187594 |
| locations[0].source.issn | 1742-6588, 1742-6596 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 1742-6588 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Journal of Physics Conference Series |
| locations[0].source.host_organization | https://openalex.org/P4310320083 |
| locations[0].source.host_organization_name | IOP Publishing |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320083, https://openalex.org/P4310311669 |
| locations[0].source.host_organization_lineage_names | IOP Publishing, Institute of Physics |
| locations[0].license | cc-by |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Journal of Physics: Conference Series |
| locations[0].landing_page_url | https://doi.org/10.1088/1742-6596/2860/1/012053 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5021075050 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Maoxuan Wang |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Maoxuan Wang |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5076632805 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-6532-8988 |
| authorships[1].author.display_name | Hanming Wu |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Hanming Wu |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5064407849 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Yuankai Shao |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Yuankai Shao |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5065638434 |
| authorships[3].author.orcid | |
| authorships[3].author.display_name | Lingwei Meng |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Lingwei Meng |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5103196797 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-8492-3069 |
| authorships[4].author.display_name | Zhenguo Li |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Zhenguo Li |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5100704948 |
| authorships[5].author.orcid | https://orcid.org/0000-0002-7919-7891 |
| authorships[5].author.display_name | Tianyou Wang |
| authorships[5].author_position | last |
| authorships[5].raw_author_name | Tianyou Wang |
| authorships[5].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.1088/1742-6596/2860/1/012053 |
| open_access.oa_status | diamond |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Interval Type-2 Fuzzy Neural Network Based Cascade Predictive Control of Superheated Steam Temperature |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10791 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.9979000091552734 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2207 |
| primary_topic.subfield.display_name | Control and Systems Engineering |
| primary_topic.display_name | Advanced Control Systems Optimization |
| related_works | https://openalex.org/W2153719181, https://openalex.org/W1971748923, https://openalex.org/W1566155057, https://openalex.org/W2060986072, https://openalex.org/W2052574922, https://openalex.org/W64588465, https://openalex.org/W3120641340, https://openalex.org/W2117825986, https://openalex.org/W2391427410, https://openalex.org/W2358865463 |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.1088/1742-6596/2860/1/012053 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210187594 |
| best_oa_location.source.issn | 1742-6588, 1742-6596 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 1742-6588 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Journal of Physics Conference Series |
| best_oa_location.source.host_organization | https://openalex.org/P4310320083 |
| best_oa_location.source.host_organization_name | IOP Publishing |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310320083, https://openalex.org/P4310311669 |
| best_oa_location.source.host_organization_lineage_names | IOP Publishing, Institute of Physics |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Journal of Physics: Conference Series |
| best_oa_location.landing_page_url | https://doi.org/10.1088/1742-6596/2860/1/012053 |
| primary_location.id | doi:10.1088/1742-6596/2860/1/012053 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210187594 |
| primary_location.source.issn | 1742-6588, 1742-6596 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 1742-6588 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Journal of Physics Conference Series |
| primary_location.source.host_organization | https://openalex.org/P4310320083 |
| primary_location.source.host_organization_name | IOP Publishing |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320083, https://openalex.org/P4310311669 |
| primary_location.source.host_organization_lineage_names | IOP Publishing, Institute of Physics |
| primary_location.license | cc-by |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Journal of Physics: Conference Series |
| primary_location.landing_page_url | https://doi.org/10.1088/1742-6596/2860/1/012053 |
| publication_date | 2024-10-01 |
| publication_year | 2024 |
| referenced_works | https://openalex.org/W2899934191, https://openalex.org/W2290318337, https://openalex.org/W2014004883, https://openalex.org/W6847426055, https://openalex.org/W1988382970, https://openalex.org/W2011678418, https://openalex.org/W6819901230, https://openalex.org/W2841459064, https://openalex.org/W2119565320, https://openalex.org/W3006367220, https://openalex.org/W2921826232, https://openalex.org/W2045732544, https://openalex.org/W4310189386, https://openalex.org/W4238130814 |
| referenced_works_count | 14 |
| abstract_inverted_index.a | 27 |
| abstract_inverted_index.In | 74 |
| abstract_inverted_index.To | 18 |
| abstract_inverted_index.as | 12 |
| abstract_inverted_index.in | 83 |
| abstract_inverted_index.is | 72, 86, 115 |
| abstract_inverted_index.of | 45, 79, 98 |
| abstract_inverted_index.on | 34, 61 |
| abstract_inverted_index.to | 41, 89, 117 |
| abstract_inverted_index.And | 59 |
| abstract_inverted_index.SST | 57 |
| abstract_inverted_index.The | 1 |
| abstract_inverted_index.and | 14, 96, 122 |
| abstract_inverted_index.for | 54 |
| abstract_inverted_index.out | 88 |
| abstract_inverted_index.the | 21, 43, 51, 56, 62, 64, 69, 75, 80, 84, 92, 101, 106, 118, 123 |
| abstract_inverted_index.SST. | 46, 99 |
| abstract_inverted_index.deal | 19 |
| abstract_inverted_index.from | 7 |
| abstract_inverted_index.such | 11 |
| abstract_inverted_index.that | 105 |
| abstract_inverted_index.then | 60 |
| abstract_inverted_index.this | 24, 48 |
| abstract_inverted_index.time | 16 |
| abstract_inverted_index.with | 20, 111, 128 |
| abstract_inverted_index.(SST) | 5 |
| abstract_inverted_index.CPCPI | 85 |
| abstract_inverted_index.PI-PI | 119 |
| abstract_inverted_index.based | 33 |
| abstract_inverted_index.basis | 63 |
| abstract_inverted_index.fixed | 129 |
| abstract_inverted_index.fuzzy | 37, 77 |
| abstract_inverted_index.large | 15 |
| abstract_inverted_index.local | 65 |
| abstract_inverted_index.model | 53 |
| abstract_inverted_index.paper | 25, 49 |
| abstract_inverted_index.speed | 95 |
| abstract_inverted_index.steam | 3 |
| abstract_inverted_index.CPC-PI | 70, 108, 125 |
| abstract_inverted_index.First, | 47 |
| abstract_inverted_index.IT2FNN | 52, 67 |
| abstract_inverted_index.delay. | 17 |
| abstract_inverted_index.factor | 82, 114 |
| abstract_inverted_index.model, | 68 |
| abstract_inverted_index.model. | 58 |
| abstract_inverted_index.neural | 38 |
| abstract_inverted_index.type-2 | 36 |
| abstract_inverted_index.verify | 104 |
| abstract_inverted_index.weight | 81, 113, 130 |
| abstract_inverted_index.carried | 87 |
| abstract_inverted_index.cascade | 28 |
| abstract_inverted_index.complex | 8 |
| abstract_inverted_index.control | 30, 109, 120, 126 |
| abstract_inverted_index.dynamic | 9, 93 |
| abstract_inverted_index.factor. | 131 |
| abstract_inverted_index.further | 90 |
| abstract_inverted_index.improve | 42, 91 |
| abstract_inverted_index.network | 39 |
| abstract_inverted_index.suffers | 6 |
| abstract_inverted_index.(CPC-PI) | 32 |
| abstract_inverted_index.(IT2FNN) | 40 |
| abstract_inverted_index.Abstract | 0 |
| abstract_inverted_index.Finally, | 100 |
| abstract_inverted_index.effects, | 23 |
| abstract_inverted_index.interval | 35 |
| abstract_inverted_index.modeling | 55 |
| abstract_inverted_index.negative | 22 |
| abstract_inverted_index.proposes | 26, 50 |
| abstract_inverted_index.response | 94 |
| abstract_inverted_index.strategy | 31, 71, 110, 121, 127 |
| abstract_inverted_index.superior | 116 |
| abstract_inverted_index.designed. | 73 |
| abstract_inverted_index.stability | 97 |
| abstract_inverted_index.following, | 76 |
| abstract_inverted_index.linearized | 66 |
| abstract_inverted_index.predictive | 29 |
| abstract_inverted_index.comparative | 102 |
| abstract_inverted_index.performance | 44 |
| abstract_inverted_index.simulations | 103 |
| abstract_inverted_index.superheated | 2 |
| abstract_inverted_index.temperature | 4 |
| abstract_inverted_index.IT2FNN-based | 107, 124 |
| abstract_inverted_index.nonlinearity | 13 |
| abstract_inverted_index.self-regulated | 112 |
| abstract_inverted_index.characteristics | 10 |
| abstract_inverted_index.self-regulation | 78 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 6 |
| citation_normalized_percentile.value | 0.24705473 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |