Intra‐City Tourism Flow Forecasting: A Novel Deep Learning Model Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.1002/jtr.70011
Intra‐city tourism flow forecasting plays a critical part in urban destination management and planning. However, research on this issue is extremely inadequate because of the challenges of intra‐city tourism flow forecasting and the difficulty of obtaining data on intra‐city tourism flows. Therefore, this study aims to construct a novel deep learning model that integrates a graph attention network and long short‐term memory for the accurate prediction of intra‐city tourism flows. A study was conducted in Xiamen, China, to confirm the validity of the proposed model supported by taxi data. The results reveal that the proposed model is applicable to intra‐city tourism flow forecasting and outperforms popular benchmarks in terms of forecasting accuracy and robustness. At last, our model effectively obtains information on distribution and temporal fluctuation of tourism flows.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1002/jtr.70011
- https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/jtr.70011
- OA Status
- bronze
- References
- 59
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4408317711
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4408317711Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1002/jtr.70011Digital Object Identifier
- Title
-
Intra‐City Tourism Flow Forecasting: A Novel Deep Learning ModelWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-03-01Full publication date if available
- Authors
-
Weimin Zheng, Xin Guo, Jianqiang LiList of authors in order
- Landing page
-
https://doi.org/10.1002/jtr.70011Publisher landing page
- PDF URL
-
https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/jtr.70011Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
bronzeOpen access status per OpenAlex
- OA URL
-
https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/jtr.70011Direct OA link when available
- Concepts
-
Tourism, Flow (mathematics), Computer science, Geography, Mathematics, Archaeology, GeometryTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
59Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4408317711 |
|---|---|
| doi | https://doi.org/10.1002/jtr.70011 |
| ids.doi | https://doi.org/10.1002/jtr.70011 |
| ids.openalex | https://openalex.org/W4408317711 |
| fwci | 0.0 |
| type | article |
| title | Intra‐City Tourism Flow Forecasting: A Novel Deep Learning Model |
| awards[0].id | https://openalex.org/G1289358523 |
| awards[0].funder_id | https://openalex.org/F4320321001 |
| awards[0].display_name | |
| awards[0].funder_award_id | 24YJA630139 |
| awards[0].funder_display_name | National Natural Science Foundation of China |
| awards[1].id | https://openalex.org/G5597683159 |
| awards[1].funder_id | https://openalex.org/F4320335982 |
| awards[1].display_name | |
| awards[1].funder_award_id | 72471202 |
| awards[1].funder_display_name | Humanities and Social Science Fund of Ministry of Education of China |
| biblio.issue | 2 |
| biblio.volume | 27 |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11344 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.9994999766349792 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2215 |
| topics[0].subfield.display_name | Building and Construction |
| topics[0].display_name | Traffic Prediction and Management Techniques |
| topics[1].id | https://openalex.org/T10698 |
| topics[1].field.id | https://openalex.org/fields/33 |
| topics[1].field.display_name | Social Sciences |
| topics[1].score | 0.9947999715805054 |
| topics[1].domain.id | https://openalex.org/domains/2 |
| topics[1].domain.display_name | Social Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/3313 |
| topics[1].subfield.display_name | Transportation |
| topics[1].display_name | Transportation Planning and Optimization |
| topics[2].id | https://openalex.org/T11980 |
| topics[2].field.id | https://openalex.org/fields/33 |
| topics[2].field.display_name | Social Sciences |
| topics[2].score | 0.9922999739646912 |
| topics[2].domain.id | https://openalex.org/domains/2 |
| topics[2].domain.display_name | Social Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/3313 |
| topics[2].subfield.display_name | Transportation |
| topics[2].display_name | Human Mobility and Location-Based Analysis |
| funders[0].id | https://openalex.org/F4320321001 |
| funders[0].ror | https://ror.org/01h0zpd94 |
| funders[0].display_name | National Natural Science Foundation of China |
| funders[1].id | https://openalex.org/F4320335982 |
| funders[1].ror | |
| funders[1].display_name | Humanities and Social Science Fund of Ministry of Education of China |
| is_xpac | False |
| apc_list.value | 3450 |
| apc_list.currency | USD |
| apc_list.value_usd | 3450 |
| apc_paid | |
| concepts[0].id | https://openalex.org/C18918823 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7612484693527222 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q49389 |
| concepts[0].display_name | Tourism |
| concepts[1].id | https://openalex.org/C38349280 |
| concepts[1].level | 2 |
| concepts[1].score | 0.4462243914604187 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q1434290 |
| concepts[1].display_name | Flow (mathematics) |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.3260689973831177 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| concepts[3].id | https://openalex.org/C205649164 |
| concepts[3].level | 0 |
| concepts[3].score | 0.20587685704231262 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q1071 |
| concepts[3].display_name | Geography |
| concepts[4].id | https://openalex.org/C33923547 |
| concepts[4].level | 0 |
| concepts[4].score | 0.08494991064071655 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[4].display_name | Mathematics |
| concepts[5].id | https://openalex.org/C166957645 |
| concepts[5].level | 1 |
| concepts[5].score | 0.0 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q23498 |
| concepts[5].display_name | Archaeology |
| concepts[6].id | https://openalex.org/C2524010 |
| concepts[6].level | 1 |
| concepts[6].score | 0.0 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q8087 |
| concepts[6].display_name | Geometry |
| keywords[0].id | https://openalex.org/keywords/tourism |
| keywords[0].score | 0.7612484693527222 |
| keywords[0].display_name | Tourism |
| keywords[1].id | https://openalex.org/keywords/flow |
| keywords[1].score | 0.4462243914604187 |
| keywords[1].display_name | Flow (mathematics) |
| keywords[2].id | https://openalex.org/keywords/computer-science |
| keywords[2].score | 0.3260689973831177 |
| keywords[2].display_name | Computer science |
| keywords[3].id | https://openalex.org/keywords/geography |
| keywords[3].score | 0.20587685704231262 |
| keywords[3].display_name | Geography |
| keywords[4].id | https://openalex.org/keywords/mathematics |
| keywords[4].score | 0.08494991064071655 |
| keywords[4].display_name | Mathematics |
| language | en |
| locations[0].id | doi:10.1002/jtr.70011 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S172501620 |
| locations[0].source.issn | 1099-2340, 1522-1970 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | 1099-2340 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | International Journal of Tourism Research |
| locations[0].source.host_organization | https://openalex.org/P4310320595 |
| locations[0].source.host_organization_name | Wiley |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320595 |
| locations[0].source.host_organization_lineage_names | Wiley |
| locations[0].license | |
| locations[0].pdf_url | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/jtr.70011 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | International Journal of Tourism Research |
| locations[0].landing_page_url | https://doi.org/10.1002/jtr.70011 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5108050911 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-4450-5428 |
| authorships[0].author.display_name | Weimin Zheng |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I191208505 |
| authorships[0].affiliations[0].raw_affiliation_string | School of Management Xiamen University Xiamen China |
| authorships[0].institutions[0].id | https://openalex.org/I191208505 |
| authorships[0].institutions[0].ror | https://ror.org/00mcjh785 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I191208505 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Xiamen University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Weimin Zheng |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | School of Management Xiamen University Xiamen China |
| authorships[1].author.id | https://openalex.org/A5102356226 |
| authorships[1].author.orcid | https://orcid.org/0009-0000-3089-6002 |
| authorships[1].author.display_name | Xin Guo |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I191208505 |
| authorships[1].affiliations[0].raw_affiliation_string | School of Management Xiamen University Xiamen China |
| authorships[1].institutions[0].id | https://openalex.org/I191208505 |
| authorships[1].institutions[0].ror | https://ror.org/00mcjh785 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I191208505 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Xiamen University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Xin Guo |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | School of Management Xiamen University Xiamen China |
| authorships[2].author.id | https://openalex.org/A5047811234 |
| authorships[2].author.orcid | https://orcid.org/0009-0004-6553-051X |
| authorships[2].author.display_name | Jianqiang Li |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I191208505 |
| authorships[2].affiliations[0].raw_affiliation_string | School of Management Xiamen University Xiamen China |
| authorships[2].institutions[0].id | https://openalex.org/I191208505 |
| authorships[2].institutions[0].ror | https://ror.org/00mcjh785 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I191208505 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | Xiamen University |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Jianqiang Li |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | School of Management Xiamen University Xiamen China |
| has_content.pdf | True |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/jtr.70011 |
| open_access.oa_status | bronze |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Intra‐City Tourism Flow Forecasting: A Novel Deep Learning Model |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11344 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.9994999766349792 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2215 |
| primary_topic.subfield.display_name | Building and Construction |
| primary_topic.display_name | Traffic Prediction and Management Techniques |
| related_works | https://openalex.org/W4391375266, https://openalex.org/W2899084033, https://openalex.org/W2748952813, https://openalex.org/W2390279801, https://openalex.org/W2391061603, https://openalex.org/W4391913857, https://openalex.org/W2358668433, https://openalex.org/W4396701345, https://openalex.org/W2386798499, https://openalex.org/W2376932109 |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.1002/jtr.70011 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S172501620 |
| best_oa_location.source.issn | 1099-2340, 1522-1970 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | 1099-2340 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | International Journal of Tourism Research |
| best_oa_location.source.host_organization | https://openalex.org/P4310320595 |
| best_oa_location.source.host_organization_name | Wiley |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310320595 |
| best_oa_location.source.host_organization_lineage_names | Wiley |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/jtr.70011 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | International Journal of Tourism Research |
| best_oa_location.landing_page_url | https://doi.org/10.1002/jtr.70011 |
| primary_location.id | doi:10.1002/jtr.70011 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S172501620 |
| primary_location.source.issn | 1099-2340, 1522-1970 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | 1099-2340 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | International Journal of Tourism Research |
| primary_location.source.host_organization | https://openalex.org/P4310320595 |
| primary_location.source.host_organization_name | Wiley |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320595 |
| primary_location.source.host_organization_lineage_names | Wiley |
| primary_location.license | |
| primary_location.pdf_url | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/jtr.70011 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | International Journal of Tourism Research |
| primary_location.landing_page_url | https://doi.org/10.1002/jtr.70011 |
| publication_date | 2025-03-01 |
| publication_year | 2025 |
| referenced_works | https://openalex.org/W4323322467, https://openalex.org/W3022716520, https://openalex.org/W2166506372, https://openalex.org/W2150805341, https://openalex.org/W2154130609, https://openalex.org/W4392215362, https://openalex.org/W2020832745, https://openalex.org/W3136115914, https://openalex.org/W2295598076, https://openalex.org/W2147017641, https://openalex.org/W2040503026, https://openalex.org/W2972093239, https://openalex.org/W2791503969, https://openalex.org/W4367693056, https://openalex.org/W2141256898, https://openalex.org/W2098584872, https://openalex.org/W2064675550, https://openalex.org/W4206661700, https://openalex.org/W4368618559, https://openalex.org/W3192020480, https://openalex.org/W4387870829, https://openalex.org/W2939094371, https://openalex.org/W4221035209, https://openalex.org/W3108100274, https://openalex.org/W2946160394, https://openalex.org/W1990322848, https://openalex.org/W3030683324, https://openalex.org/W3119249947, https://openalex.org/W4381741038, https://openalex.org/W4308220226, https://openalex.org/W3183515060, https://openalex.org/W2115160295, https://openalex.org/W2013311305, https://openalex.org/W4281660468, https://openalex.org/W2006746888, https://openalex.org/W2939264787, https://openalex.org/W4308799120, https://openalex.org/W4297733535, https://openalex.org/W2776509196, https://openalex.org/W4393325768, https://openalex.org/W2949732208, https://openalex.org/W3082034060, https://openalex.org/W4388915555, https://openalex.org/W3046137446, https://openalex.org/W3193812480, https://openalex.org/W4387065466, https://openalex.org/W3084394145, https://openalex.org/W3200661810, https://openalex.org/W4296188488, https://openalex.org/W2999886233, https://openalex.org/W2901504064, https://openalex.org/W4224240915, https://openalex.org/W3178278961, https://openalex.org/W4392469372, https://openalex.org/W1989522934, https://openalex.org/W2508788195, https://openalex.org/W4327967079, https://openalex.org/W1973943669, https://openalex.org/W1968869377 |
| referenced_works_count | 59 |
| abstract_inverted_index.A | 71 |
| abstract_inverted_index.a | 6, 48, 55 |
| abstract_inverted_index.At | 115 |
| abstract_inverted_index.by | 87 |
| abstract_inverted_index.in | 9, 75, 108 |
| abstract_inverted_index.is | 20, 97 |
| abstract_inverted_index.of | 24, 27, 35, 67, 82, 110, 127 |
| abstract_inverted_index.on | 17, 38, 122 |
| abstract_inverted_index.to | 46, 78, 99 |
| abstract_inverted_index.The | 90 |
| abstract_inverted_index.and | 13, 32, 59, 104, 113, 124 |
| abstract_inverted_index.for | 63 |
| abstract_inverted_index.our | 117 |
| abstract_inverted_index.the | 25, 33, 64, 80, 83, 94 |
| abstract_inverted_index.was | 73 |
| abstract_inverted_index.aims | 45 |
| abstract_inverted_index.data | 37 |
| abstract_inverted_index.deep | 50 |
| abstract_inverted_index.flow | 3, 30, 102 |
| abstract_inverted_index.long | 60 |
| abstract_inverted_index.part | 8 |
| abstract_inverted_index.taxi | 88 |
| abstract_inverted_index.that | 53, 93 |
| abstract_inverted_index.this | 18, 43 |
| abstract_inverted_index.data. | 89 |
| abstract_inverted_index.graph | 56 |
| abstract_inverted_index.issue | 19 |
| abstract_inverted_index.last, | 116 |
| abstract_inverted_index.model | 52, 85, 96, 118 |
| abstract_inverted_index.novel | 49 |
| abstract_inverted_index.plays | 5 |
| abstract_inverted_index.study | 44, 72 |
| abstract_inverted_index.terms | 109 |
| abstract_inverted_index.urban | 10 |
| abstract_inverted_index.China, | 77 |
| abstract_inverted_index.flows. | 41, 70, 129 |
| abstract_inverted_index.memory | 62 |
| abstract_inverted_index.reveal | 92 |
| abstract_inverted_index.Xiamen, | 76 |
| abstract_inverted_index.because | 23 |
| abstract_inverted_index.confirm | 79 |
| abstract_inverted_index.network | 58 |
| abstract_inverted_index.obtains | 120 |
| abstract_inverted_index.popular | 106 |
| abstract_inverted_index.results | 91 |
| abstract_inverted_index.tourism | 2, 29, 40, 69, 101, 128 |
| abstract_inverted_index.ABSTRACT | 0 |
| abstract_inverted_index.However, | 15 |
| abstract_inverted_index.accuracy | 112 |
| abstract_inverted_index.accurate | 65 |
| abstract_inverted_index.critical | 7 |
| abstract_inverted_index.learning | 51 |
| abstract_inverted_index.proposed | 84, 95 |
| abstract_inverted_index.research | 16 |
| abstract_inverted_index.temporal | 125 |
| abstract_inverted_index.validity | 81 |
| abstract_inverted_index.attention | 57 |
| abstract_inverted_index.conducted | 74 |
| abstract_inverted_index.construct | 47 |
| abstract_inverted_index.extremely | 21 |
| abstract_inverted_index.obtaining | 36 |
| abstract_inverted_index.planning. | 14 |
| abstract_inverted_index.supported | 86 |
| abstract_inverted_index.Therefore, | 42 |
| abstract_inverted_index.applicable | 98 |
| abstract_inverted_index.benchmarks | 107 |
| abstract_inverted_index.challenges | 26 |
| abstract_inverted_index.difficulty | 34 |
| abstract_inverted_index.inadequate | 22 |
| abstract_inverted_index.integrates | 54 |
| abstract_inverted_index.management | 12 |
| abstract_inverted_index.prediction | 66 |
| abstract_inverted_index.destination | 11 |
| abstract_inverted_index.effectively | 119 |
| abstract_inverted_index.fluctuation | 126 |
| abstract_inverted_index.forecasting | 4, 31, 103, 111 |
| abstract_inverted_index.information | 121 |
| abstract_inverted_index.outperforms | 105 |
| abstract_inverted_index.robustness. | 114 |
| abstract_inverted_index.Intra‐city | 1 |
| abstract_inverted_index.distribution | 123 |
| abstract_inverted_index.intra‐city | 28, 39, 68, 100 |
| abstract_inverted_index.short‐term | 61 |
| cited_by_percentile_year | |
| countries_distinct_count | 1 |
| institutions_distinct_count | 3 |
| citation_normalized_percentile.value | 0.07460357 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |