Intrinsic Directions, Orthogonality and Distinguished Geodesics in the Symmetrized Bidisc Article Swipe
YOU?
·
· 2020
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2012.03304
The symmetrized bidisc \[ G \stackrel{\rm{def}}{=}\{(z+w,zw):|z|<1,\ |w|<1\}, \] under the Carathéodory metric, is a complex Finsler space of cohomogeneity $1$ in which the geodesics, both real and complex, enjoy a rich geometry. As a Finsler manifold, $G$ does not admit a natural notion of angle, but we nevertheless show that there {\em is} a notion of orthogonality. The complex tangent bundle $TG$ splits naturally into the direct sum of two line bundles, which we call the {\em sharp} and {\em flat} bundles, and which are geometrically defined and therefore covariant under automorphisms of $G$. Through every point of $G$ there is a unique complex geodesic of $G$ in the flat direction, having the form \[ F^β\stackrel{\rm{def}}{=}\{(β+\barβz,z)\ : z\in\mathbb{D}\} \] for some $β\in\mathbb{D}$, and called a {\em flat geodesic}. We say that a complex geodesic \emph{$D$ is orthogonal} to a flat geodesic $F$ if $D$ meets $F$ at a point $λ$ and the complex tangent space $T_λD$ at $λ$ is in the sharp direction at $λ$. We prove that a geodesic $D$ has the closest point property with respect to a flat geodesic $F$ if and only if $D$ is orthogonal to $F$ in the above sense. Moreover, $G$ is foliated by the geodesics in $G$ that are orthogonal to a fixed flat geodesic $F$.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2012.03304
- https://arxiv.org/pdf/2012.03304
- OA Status
- green
- References
- 16
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W3111774338
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W3111774338Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2012.03304Digital Object Identifier
- Title
-
Intrinsic Directions, Orthogonality and Distinguished Geodesics in the Symmetrized BidiscWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2020Year of publication
- Publication date
-
2020-12-06Full publication date if available
- Authors
-
Jim Agler, Zinaida A. Lykova, N. J. YoungList of authors in order
- Landing page
-
https://arxiv.org/abs/2012.03304Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2012.03304Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2012.03304Direct OA link when available
- Concepts
-
Geodesic, Mathematics, Orthogonality, Tangent space, Tangent bundle, Pure mathematics, Lambda, Combinatorics, Tangent vector, Space (punctuation), Manifold (fluid mechanics), Mathematical analysis, Geometry, Tangent, Physics, Engineering, Linguistics, Mechanical engineering, Philosophy, OpticsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
16Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W3111774338 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2012.03304 |
| ids.doi | https://doi.org/10.48550/arxiv.2012.03304 |
| ids.mag | 3111774338 |
| ids.openalex | https://openalex.org/W3111774338 |
| fwci | |
| type | preprint |
| title | Intrinsic Directions, Orthogonality and Distinguished Geodesics in the Symmetrized Bidisc |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T13080 |
| topics[0].field.id | https://openalex.org/fields/31 |
| topics[0].field.display_name | Physics and Astronomy |
| topics[0].score | 0.9998999834060669 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/3103 |
| topics[0].subfield.display_name | Astronomy and Astrophysics |
| topics[0].display_name | Advanced Differential Geometry Research |
| topics[1].id | https://openalex.org/T10229 |
| topics[1].field.id | https://openalex.org/fields/26 |
| topics[1].field.display_name | Mathematics |
| topics[1].score | 0.9959999918937683 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2604 |
| topics[1].subfield.display_name | Applied Mathematics |
| topics[1].display_name | Geometric Analysis and Curvature Flows |
| topics[2].id | https://openalex.org/T12351 |
| topics[2].field.id | https://openalex.org/fields/26 |
| topics[2].field.display_name | Mathematics |
| topics[2].score | 0.9814000129699707 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2608 |
| topics[2].subfield.display_name | Geometry and Topology |
| topics[2].display_name | Geometry and complex manifolds |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C165818556 |
| concepts[0].level | 2 |
| concepts[0].score | 0.8331037759780884 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q213488 |
| concepts[0].display_name | Geodesic |
| concepts[1].id | https://openalex.org/C33923547 |
| concepts[1].level | 0 |
| concepts[1].score | 0.6562203168869019 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[1].display_name | Mathematics |
| concepts[2].id | https://openalex.org/C17137986 |
| concepts[2].level | 2 |
| concepts[2].score | 0.5278544425964355 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q215067 |
| concepts[2].display_name | Orthogonality |
| concepts[3].id | https://openalex.org/C157157409 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5045512914657593 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q909601 |
| concepts[3].display_name | Tangent space |
| concepts[4].id | https://openalex.org/C28903235 |
| concepts[4].level | 3 |
| concepts[4].score | 0.48885124921798706 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q746550 |
| concepts[4].display_name | Tangent bundle |
| concepts[5].id | https://openalex.org/C202444582 |
| concepts[5].level | 1 |
| concepts[5].score | 0.4723946750164032 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q837863 |
| concepts[5].display_name | Pure mathematics |
| concepts[6].id | https://openalex.org/C2778113609 |
| concepts[6].level | 2 |
| concepts[6].score | 0.4378817081451416 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q10897 |
| concepts[6].display_name | Lambda |
| concepts[7].id | https://openalex.org/C114614502 |
| concepts[7].level | 1 |
| concepts[7].score | 0.43751275539398193 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q76592 |
| concepts[7].display_name | Combinatorics |
| concepts[8].id | https://openalex.org/C47890412 |
| concepts[8].level | 3 |
| concepts[8].score | 0.4371567368507385 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q1179296 |
| concepts[8].display_name | Tangent vector |
| concepts[9].id | https://openalex.org/C2778572836 |
| concepts[9].level | 2 |
| concepts[9].score | 0.4317273795604706 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q380933 |
| concepts[9].display_name | Space (punctuation) |
| concepts[10].id | https://openalex.org/C529865628 |
| concepts[10].level | 2 |
| concepts[10].score | 0.4107773005962372 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q1790740 |
| concepts[10].display_name | Manifold (fluid mechanics) |
| concepts[11].id | https://openalex.org/C134306372 |
| concepts[11].level | 1 |
| concepts[11].score | 0.3738347589969635 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q7754 |
| concepts[11].display_name | Mathematical analysis |
| concepts[12].id | https://openalex.org/C2524010 |
| concepts[12].level | 1 |
| concepts[12].score | 0.3576413691043854 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q8087 |
| concepts[12].display_name | Geometry |
| concepts[13].id | https://openalex.org/C138187205 |
| concepts[13].level | 2 |
| concepts[13].score | 0.3348070979118347 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q131251 |
| concepts[13].display_name | Tangent |
| concepts[14].id | https://openalex.org/C121332964 |
| concepts[14].level | 0 |
| concepts[14].score | 0.19235321879386902 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[14].display_name | Physics |
| concepts[15].id | https://openalex.org/C127413603 |
| concepts[15].level | 0 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q11023 |
| concepts[15].display_name | Engineering |
| concepts[16].id | https://openalex.org/C41895202 |
| concepts[16].level | 1 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q8162 |
| concepts[16].display_name | Linguistics |
| concepts[17].id | https://openalex.org/C78519656 |
| concepts[17].level | 1 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q101333 |
| concepts[17].display_name | Mechanical engineering |
| concepts[18].id | https://openalex.org/C138885662 |
| concepts[18].level | 0 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q5891 |
| concepts[18].display_name | Philosophy |
| concepts[19].id | https://openalex.org/C120665830 |
| concepts[19].level | 1 |
| concepts[19].score | 0.0 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q14620 |
| concepts[19].display_name | Optics |
| keywords[0].id | https://openalex.org/keywords/geodesic |
| keywords[0].score | 0.8331037759780884 |
| keywords[0].display_name | Geodesic |
| keywords[1].id | https://openalex.org/keywords/mathematics |
| keywords[1].score | 0.6562203168869019 |
| keywords[1].display_name | Mathematics |
| keywords[2].id | https://openalex.org/keywords/orthogonality |
| keywords[2].score | 0.5278544425964355 |
| keywords[2].display_name | Orthogonality |
| keywords[3].id | https://openalex.org/keywords/tangent-space |
| keywords[3].score | 0.5045512914657593 |
| keywords[3].display_name | Tangent space |
| keywords[4].id | https://openalex.org/keywords/tangent-bundle |
| keywords[4].score | 0.48885124921798706 |
| keywords[4].display_name | Tangent bundle |
| keywords[5].id | https://openalex.org/keywords/pure-mathematics |
| keywords[5].score | 0.4723946750164032 |
| keywords[5].display_name | Pure mathematics |
| keywords[6].id | https://openalex.org/keywords/lambda |
| keywords[6].score | 0.4378817081451416 |
| keywords[6].display_name | Lambda |
| keywords[7].id | https://openalex.org/keywords/combinatorics |
| keywords[7].score | 0.43751275539398193 |
| keywords[7].display_name | Combinatorics |
| keywords[8].id | https://openalex.org/keywords/tangent-vector |
| keywords[8].score | 0.4371567368507385 |
| keywords[8].display_name | Tangent vector |
| keywords[9].id | https://openalex.org/keywords/space |
| keywords[9].score | 0.4317273795604706 |
| keywords[9].display_name | Space (punctuation) |
| keywords[10].id | https://openalex.org/keywords/manifold |
| keywords[10].score | 0.4107773005962372 |
| keywords[10].display_name | Manifold (fluid mechanics) |
| keywords[11].id | https://openalex.org/keywords/mathematical-analysis |
| keywords[11].score | 0.3738347589969635 |
| keywords[11].display_name | Mathematical analysis |
| keywords[12].id | https://openalex.org/keywords/geometry |
| keywords[12].score | 0.3576413691043854 |
| keywords[12].display_name | Geometry |
| keywords[13].id | https://openalex.org/keywords/tangent |
| keywords[13].score | 0.3348070979118347 |
| keywords[13].display_name | Tangent |
| keywords[14].id | https://openalex.org/keywords/physics |
| keywords[14].score | 0.19235321879386902 |
| keywords[14].display_name | Physics |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2012.03304 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2012.03304 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2012.03304 |
| locations[1].id | pmh:oai:eprint.ncl.ac.uk:271925 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306402485 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | Newcastle University ePrints (Newcastle Univesity) |
| locations[1].source.host_organization | https://openalex.org/I84884186 |
| locations[1].source.host_organization_name | Newcastle University |
| locations[1].source.host_organization_lineage | https://openalex.org/I84884186 |
| locations[1].license | cc-by |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | |
| locations[1].license_id | https://openalex.org/licenses/cc-by |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://eprint.ncl.ac.uk/271925 |
| locations[2].id | doi:10.48550/arxiv.2012.03304 |
| locations[2].is_oa | True |
| locations[2].source.id | https://openalex.org/S4306400194 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | True |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | arXiv (Cornell University) |
| locations[2].source.host_organization | https://openalex.org/I205783295 |
| locations[2].source.host_organization_name | Cornell University |
| locations[2].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[2].license | cc-by |
| locations[2].pdf_url | |
| locations[2].version | |
| locations[2].raw_type | article |
| locations[2].license_id | https://openalex.org/licenses/cc-by |
| locations[2].is_accepted | False |
| locations[2].is_published | |
| locations[2].raw_source_name | |
| locations[2].landing_page_url | https://doi.org/10.48550/arxiv.2012.03304 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5049940095 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Jim Agler |
| authorships[0].countries | US |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I36258959 |
| authorships[0].affiliations[0].raw_affiliation_string | Department of Mathematics, University of California at San Diego, La Jolla, USA#TAB# |
| authorships[0].institutions[0].id | https://openalex.org/I36258959 |
| authorships[0].institutions[0].ror | https://ror.org/0168r3w48 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I36258959 |
| authorships[0].institutions[0].country_code | US |
| authorships[0].institutions[0].display_name | University of California, San Diego |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Jim Agler |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Department of Mathematics, University of California at San Diego, La Jolla, USA#TAB# |
| authorships[1].author.id | https://openalex.org/A5029152804 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-5488-9840 |
| authorships[1].author.display_name | Zinaida A. Lykova |
| authorships[1].countries | GB |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I84884186 |
| authorships[1].affiliations[0].raw_affiliation_string | School of Mathematics, Statistics and Physics, Newcastle University, Newcastle Upon Tyne, UK |
| authorships[1].institutions[0].id | https://openalex.org/I84884186 |
| authorships[1].institutions[0].ror | https://ror.org/01kj2bm70 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I84884186 |
| authorships[1].institutions[0].country_code | GB |
| authorships[1].institutions[0].display_name | Newcastle University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Zinaida Lykova |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | School of Mathematics, Statistics and Physics, Newcastle University, Newcastle Upon Tyne, UK |
| authorships[2].author.id | https://openalex.org/A5103195996 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-2707-1450 |
| authorships[2].author.display_name | N. J. Young |
| authorships[2].countries | GB |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I130828816 |
| authorships[2].affiliations[0].raw_affiliation_string | School of Mathematics, Leeds University, Leeds, UK |
| authorships[2].affiliations[1].institution_ids | https://openalex.org/I84884186 |
| authorships[2].affiliations[1].raw_affiliation_string | School of Mathematics, Statistics and Physics, Newcastle University, Newcastle upon Tyne, UK |
| authorships[2].institutions[0].id | https://openalex.org/I84884186 |
| authorships[2].institutions[0].ror | https://ror.org/01kj2bm70 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I84884186 |
| authorships[2].institutions[0].country_code | GB |
| authorships[2].institutions[0].display_name | Newcastle University |
| authorships[2].institutions[1].id | https://openalex.org/I130828816 |
| authorships[2].institutions[1].ror | https://ror.org/024mrxd33 |
| authorships[2].institutions[1].type | education |
| authorships[2].institutions[1].lineage | https://openalex.org/I130828816 |
| authorships[2].institutions[1].country_code | GB |
| authorships[2].institutions[1].display_name | University of Leeds |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | N. J. Young |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | School of Mathematics, Leeds University, Leeds, UK, School of Mathematics, Statistics and Physics, Newcastle University, Newcastle upon Tyne, UK |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2012.03304 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2020-12-21T00:00:00 |
| display_name | Intrinsic Directions, Orthogonality and Distinguished Geodesics in the Symmetrized Bidisc |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T13080 |
| primary_topic.field.id | https://openalex.org/fields/31 |
| primary_topic.field.display_name | Physics and Astronomy |
| primary_topic.score | 0.9998999834060669 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/3103 |
| primary_topic.subfield.display_name | Astronomy and Astrophysics |
| primary_topic.display_name | Advanced Differential Geometry Research |
| related_works | https://openalex.org/W2361271799, https://openalex.org/W4249328994, https://openalex.org/W2050728860, https://openalex.org/W2391887161, https://openalex.org/W2400724917, https://openalex.org/W4251743830, https://openalex.org/W2577818139, https://openalex.org/W2098859420, https://openalex.org/W2096561270, https://openalex.org/W2381565014 |
| cited_by_count | 0 |
| locations_count | 3 |
| best_oa_location.id | pmh:oai:arXiv.org:2012.03304 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2012.03304 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2012.03304 |
| primary_location.id | pmh:oai:arXiv.org:2012.03304 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2012.03304 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2012.03304 |
| publication_date | 2020-12-06 |
| publication_year | 2020 |
| referenced_works | https://openalex.org/W2963485199, https://openalex.org/W2894822917, https://openalex.org/W1488781340, https://openalex.org/W2056062332, https://openalex.org/W1671098680, https://openalex.org/W1997977064, https://openalex.org/W2062625238, https://openalex.org/W2964161144, https://openalex.org/W2082258142, https://openalex.org/W2624899566, https://openalex.org/W2076401666, https://openalex.org/W2965908622, https://openalex.org/W77434391, https://openalex.org/W1568488468, https://openalex.org/W2911158797, https://openalex.org/W2044659625 |
| referenced_works_count | 16 |
| abstract_inverted_index.: | 116 |
| abstract_inverted_index.G | 4 |
| abstract_inverted_index.a | 13, 29, 33, 40, 53, 101, 124, 131, 138, 147, 168, 179, 209 |
| abstract_inverted_index.As | 32 |
| abstract_inverted_index.We | 128, 165 |
| abstract_inverted_index.\[ | 3, 114 |
| abstract_inverted_index.\] | 7, 118 |
| abstract_inverted_index.at | 146, 156, 163 |
| abstract_inverted_index.by | 200 |
| abstract_inverted_index.if | 142, 183, 186 |
| abstract_inverted_index.in | 20, 107, 159, 192, 203 |
| abstract_inverted_index.is | 12, 100, 135, 158, 188, 198 |
| abstract_inverted_index.of | 17, 43, 55, 68, 92, 97, 105 |
| abstract_inverted_index.to | 137, 178, 190, 208 |
| abstract_inverted_index.we | 46, 73 |
| abstract_inverted_index.$1$ | 19 |
| abstract_inverted_index.$D$ | 143, 170, 187 |
| abstract_inverted_index.$F$ | 141, 145, 182, 191 |
| abstract_inverted_index.$G$ | 36, 98, 106, 197, 204 |
| abstract_inverted_index.The | 0, 57 |
| abstract_inverted_index.and | 26, 78, 82, 87, 122, 150, 184 |
| abstract_inverted_index.are | 84, 206 |
| abstract_inverted_index.but | 45 |
| abstract_inverted_index.for | 119 |
| abstract_inverted_index.has | 171 |
| abstract_inverted_index.is} | 52 |
| abstract_inverted_index.not | 38 |
| abstract_inverted_index.say | 129 |
| abstract_inverted_index.sum | 67 |
| abstract_inverted_index.the | 9, 22, 65, 75, 108, 112, 151, 160, 172, 193, 201 |
| abstract_inverted_index.two | 69 |
| abstract_inverted_index.$F$. | 213 |
| abstract_inverted_index.$G$. | 93 |
| abstract_inverted_index.$TG$ | 61 |
| abstract_inverted_index.$λ$ | 149, 157 |
| abstract_inverted_index.both | 24 |
| abstract_inverted_index.call | 74 |
| abstract_inverted_index.does | 37 |
| abstract_inverted_index.flat | 109, 126, 139, 180, 211 |
| abstract_inverted_index.form | 113 |
| abstract_inverted_index.into | 64 |
| abstract_inverted_index.line | 70 |
| abstract_inverted_index.only | 185 |
| abstract_inverted_index.real | 25 |
| abstract_inverted_index.rich | 30 |
| abstract_inverted_index.show | 48 |
| abstract_inverted_index.some | 120 |
| abstract_inverted_index.that | 49, 130, 167, 205 |
| abstract_inverted_index.with | 176 |
| abstract_inverted_index.{\em | 51, 76, 79, 125 |
| abstract_inverted_index.$λ$. | 164 |
| abstract_inverted_index.above | 194 |
| abstract_inverted_index.admit | 39 |
| abstract_inverted_index.enjoy | 28 |
| abstract_inverted_index.every | 95 |
| abstract_inverted_index.fixed | 210 |
| abstract_inverted_index.flat} | 80 |
| abstract_inverted_index.meets | 144 |
| abstract_inverted_index.point | 96, 148, 174 |
| abstract_inverted_index.prove | 166 |
| abstract_inverted_index.sharp | 161 |
| abstract_inverted_index.space | 16, 154 |
| abstract_inverted_index.there | 50, 99 |
| abstract_inverted_index.under | 8, 90 |
| abstract_inverted_index.which | 21, 72, 83 |
| abstract_inverted_index.angle, | 44 |
| abstract_inverted_index.bidisc | 2 |
| abstract_inverted_index.bundle | 60 |
| abstract_inverted_index.called | 123 |
| abstract_inverted_index.direct | 66 |
| abstract_inverted_index.having | 111 |
| abstract_inverted_index.notion | 42, 54 |
| abstract_inverted_index.sense. | 195 |
| abstract_inverted_index.sharp} | 77 |
| abstract_inverted_index.splits | 62 |
| abstract_inverted_index.unique | 102 |
| abstract_inverted_index.$T_λD$ | 155 |
| abstract_inverted_index.Finsler | 15, 34 |
| abstract_inverted_index.Through | 94 |
| abstract_inverted_index.closest | 173 |
| abstract_inverted_index.complex | 14, 58, 103, 132, 152 |
| abstract_inverted_index.defined | 86 |
| abstract_inverted_index.metric, | 11 |
| abstract_inverted_index.natural | 41 |
| abstract_inverted_index.respect | 177 |
| abstract_inverted_index.tangent | 59, 153 |
| abstract_inverted_index.bundles, | 71, 81 |
| abstract_inverted_index.complex, | 27 |
| abstract_inverted_index.foliated | 199 |
| abstract_inverted_index.geodesic | 104, 133, 140, 169, 181, 212 |
| abstract_inverted_index.property | 175 |
| abstract_inverted_index.Moreover, | 196 |
| abstract_inverted_index.\emph{$D$ | 134 |
| abstract_inverted_index.covariant | 89 |
| abstract_inverted_index.direction | 162 |
| abstract_inverted_index.geodesics | 202 |
| abstract_inverted_index.geometry. | 31 |
| abstract_inverted_index.manifold, | 35 |
| abstract_inverted_index.naturally | 63 |
| abstract_inverted_index.therefore | 88 |
| abstract_inverted_index.direction, | 110 |
| abstract_inverted_index.geodesics, | 23 |
| abstract_inverted_index.geodesic}. | 127 |
| abstract_inverted_index.orthogonal | 189, 207 |
| abstract_inverted_index.orthogonal} | 136 |
| abstract_inverted_index.symmetrized | 1 |
| abstract_inverted_index.|w|<1\}, | 6 |
| abstract_inverted_index.nevertheless | 47 |
| abstract_inverted_index.Carathéodory | 10 |
| abstract_inverted_index.automorphisms | 91 |
| abstract_inverted_index.cohomogeneity | 18 |
| abstract_inverted_index.geometrically | 85 |
| abstract_inverted_index.orthogonality. | 56 |
| abstract_inverted_index.z\in\mathbb{D}\} | 117 |
| abstract_inverted_index.$β\in\mathbb{D}$, | 121 |
| abstract_inverted_index.F^β\stackrel{\rm{def}}{=}\{(β+\barβz,z)\ | 115 |
| abstract_inverted_index.\stackrel{\rm{def}}{=}\{(z+w,zw):|z|<1,\ | 5 |
| cited_by_percentile_year | |
| countries_distinct_count | 2 |
| institutions_distinct_count | 3 |
| citation_normalized_percentile |