InvarGC: Invariant Granger Causality for Heterogeneous Interventional Time Series under Latent Confounding Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2510.19138
Granger causality is widely used for causal structure discovery in complex systems from multivariate time series data. Traditional Granger causality tests based on linear models often fail to detect even mild non-linear causal relationships. Therefore, numerous recent studies have investigated non-linear Granger causality methods, achieving improved performance. However, these methods often rely on two key assumptions: causal sufficiency and known interventional targets. Causal sufficiency assumes the absence of latent confounders, yet their presence can introduce spurious correlations. Moreover, real-world time series data usually come from heterogeneous environments, without prior knowledge of interventions. Therefore, in practice, it is difficult to distinguish intervened environments from non-intervened ones, and even harder to identify which variables or timesteps are affected. To address these challenges, we propose Invariant Granger Causality (InvarGC), which leverages cross-environment heterogeneity to mitigate the effects of latent confounding and to distinguish intervened from non-intervened environments with edge-level granularity, thereby recovering invariant causal relations. In addition, we establish the identifiability under these conditions. Extensive experiments on both synthetic and real-world datasets demonstrate the competitive performance of our approach compared to state-of-the-art methods.
Related Topics
- Type
- preprint
- Landing Page
- http://arxiv.org/abs/2510.19138
- https://arxiv.org/pdf/2510.19138
- OA Status
- green
- OpenAlex ID
- https://openalex.org/W4416246513
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4416246513Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2510.19138Digital Object Identifier
- Title
-
InvarGC: Invariant Granger Causality for Heterogeneous Interventional Time Series under Latent ConfoundingWork title
- Type
-
preprintOpenAlex work type
- Publication year
-
2025Year of publication
- Publication date
-
2025-10-22Full publication date if available
- Authors
-
Ziyi Zhang, Shaogang Ren, Xiaoning Qian, Nick DuffieldList of authors in order
- Landing page
-
https://arxiv.org/abs/2510.19138Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2510.19138Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2510.19138Direct OA link when available
- Cited by
-
0Total citation count in OpenAlex
Full payload
| id | https://openalex.org/W4416246513 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2510.19138 |
| ids.doi | https://doi.org/10.48550/arxiv.2510.19138 |
| ids.openalex | https://openalex.org/W4416246513 |
| fwci | |
| type | preprint |
| title | InvarGC: Invariant Granger Causality for Heterogeneous Interventional Time Series under Latent Confounding |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| language | |
| locations[0].id | pmh:oai:arXiv.org:2510.19138 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2510.19138 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2510.19138 |
| locations[1].id | doi:10.48550/arxiv.2510.19138 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2510.19138 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5072498668 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-1169-1025 |
| authorships[0].author.display_name | Ziyi Zhang |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Zhang, Ziyi |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5063255678 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-2961-1636 |
| authorships[1].author.display_name | Shaogang Ren |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Ren, Shaogang |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5073946580 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-4347-2476 |
| authorships[2].author.display_name | Xiaoning Qian |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Qian, Xiaoning |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5048558842 |
| authorships[3].author.orcid | https://orcid.org/0000-0001-7211-1584 |
| authorships[3].author.display_name | Nick Duffield |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Duffield, Nick |
| authorships[3].is_corresponding | False |
| has_content.pdf | True |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2510.19138 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-24T00:00:00 |
| display_name | InvarGC: Invariant Granger Causality for Heterogeneous Interventional Time Series under Latent Confounding |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-28T09:12:57.984676 |
| primary_topic | |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2510.19138 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2510.19138 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2510.19138 |
| primary_location.id | pmh:oai:arXiv.org:2510.19138 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2510.19138 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2510.19138 |
| publication_date | 2025-10-22 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.In | 152 |
| abstract_inverted_index.To | 116 |
| abstract_inverted_index.in | 9, 93 |
| abstract_inverted_index.is | 2, 96 |
| abstract_inverted_index.it | 95 |
| abstract_inverted_index.of | 67, 90, 134, 173 |
| abstract_inverted_index.on | 22, 52, 163 |
| abstract_inverted_index.or | 112 |
| abstract_inverted_index.to | 27, 98, 108, 130, 138, 177 |
| abstract_inverted_index.we | 120, 154 |
| abstract_inverted_index.and | 58, 105, 137, 166 |
| abstract_inverted_index.are | 114 |
| abstract_inverted_index.can | 73 |
| abstract_inverted_index.for | 5 |
| abstract_inverted_index.key | 54 |
| abstract_inverted_index.our | 174 |
| abstract_inverted_index.the | 65, 132, 156, 170 |
| abstract_inverted_index.two | 53 |
| abstract_inverted_index.yet | 70 |
| abstract_inverted_index.both | 164 |
| abstract_inverted_index.come | 83 |
| abstract_inverted_index.data | 81 |
| abstract_inverted_index.even | 29, 106 |
| abstract_inverted_index.fail | 26 |
| abstract_inverted_index.from | 12, 84, 102, 141 |
| abstract_inverted_index.have | 38 |
| abstract_inverted_index.mild | 30 |
| abstract_inverted_index.rely | 51 |
| abstract_inverted_index.time | 14, 79 |
| abstract_inverted_index.used | 4 |
| abstract_inverted_index.with | 144 |
| abstract_inverted_index.based | 21 |
| abstract_inverted_index.data. | 16 |
| abstract_inverted_index.known | 59 |
| abstract_inverted_index.often | 25, 50 |
| abstract_inverted_index.ones, | 104 |
| abstract_inverted_index.prior | 88 |
| abstract_inverted_index.tests | 20 |
| abstract_inverted_index.their | 71 |
| abstract_inverted_index.these | 48, 118, 159 |
| abstract_inverted_index.under | 158 |
| abstract_inverted_index.which | 110, 126 |
| abstract_inverted_index.Causal | 62 |
| abstract_inverted_index.causal | 6, 32, 56, 150 |
| abstract_inverted_index.detect | 28 |
| abstract_inverted_index.harder | 107 |
| abstract_inverted_index.latent | 68, 135 |
| abstract_inverted_index.linear | 23 |
| abstract_inverted_index.models | 24 |
| abstract_inverted_index.recent | 36 |
| abstract_inverted_index.series | 15, 80 |
| abstract_inverted_index.widely | 3 |
| abstract_inverted_index.Granger | 0, 18, 41, 123 |
| abstract_inverted_index.absence | 66 |
| abstract_inverted_index.address | 117 |
| abstract_inverted_index.assumes | 64 |
| abstract_inverted_index.complex | 10 |
| abstract_inverted_index.effects | 133 |
| abstract_inverted_index.methods | 49 |
| abstract_inverted_index.propose | 121 |
| abstract_inverted_index.studies | 37 |
| abstract_inverted_index.systems | 11 |
| abstract_inverted_index.thereby | 147 |
| abstract_inverted_index.usually | 82 |
| abstract_inverted_index.without | 87 |
| abstract_inverted_index.However, | 47 |
| abstract_inverted_index.approach | 175 |
| abstract_inverted_index.compared | 176 |
| abstract_inverted_index.datasets | 168 |
| abstract_inverted_index.identify | 109 |
| abstract_inverted_index.improved | 45 |
| abstract_inverted_index.methods, | 43 |
| abstract_inverted_index.methods. | 179 |
| abstract_inverted_index.mitigate | 131 |
| abstract_inverted_index.numerous | 35 |
| abstract_inverted_index.presence | 72 |
| abstract_inverted_index.spurious | 75 |
| abstract_inverted_index.targets. | 61 |
| abstract_inverted_index.Causality | 124 |
| abstract_inverted_index.Extensive | 161 |
| abstract_inverted_index.Invariant | 122 |
| abstract_inverted_index.Moreover, | 77 |
| abstract_inverted_index.achieving | 44 |
| abstract_inverted_index.addition, | 153 |
| abstract_inverted_index.affected. | 115 |
| abstract_inverted_index.causality | 1, 19, 42 |
| abstract_inverted_index.difficult | 97 |
| abstract_inverted_index.discovery | 8 |
| abstract_inverted_index.establish | 155 |
| abstract_inverted_index.introduce | 74 |
| abstract_inverted_index.invariant | 149 |
| abstract_inverted_index.knowledge | 89 |
| abstract_inverted_index.leverages | 127 |
| abstract_inverted_index.practice, | 94 |
| abstract_inverted_index.structure | 7 |
| abstract_inverted_index.synthetic | 165 |
| abstract_inverted_index.timesteps | 113 |
| abstract_inverted_index.variables | 111 |
| abstract_inverted_index.(InvarGC), | 125 |
| abstract_inverted_index.Therefore, | 34, 92 |
| abstract_inverted_index.edge-level | 145 |
| abstract_inverted_index.intervened | 100, 140 |
| abstract_inverted_index.non-linear | 31, 40 |
| abstract_inverted_index.real-world | 78, 167 |
| abstract_inverted_index.recovering | 148 |
| abstract_inverted_index.relations. | 151 |
| abstract_inverted_index.Traditional | 17 |
| abstract_inverted_index.challenges, | 119 |
| abstract_inverted_index.competitive | 171 |
| abstract_inverted_index.conditions. | 160 |
| abstract_inverted_index.confounding | 136 |
| abstract_inverted_index.demonstrate | 169 |
| abstract_inverted_index.distinguish | 99, 139 |
| abstract_inverted_index.experiments | 162 |
| abstract_inverted_index.performance | 172 |
| abstract_inverted_index.sufficiency | 57, 63 |
| abstract_inverted_index.assumptions: | 55 |
| abstract_inverted_index.confounders, | 69 |
| abstract_inverted_index.environments | 101, 143 |
| abstract_inverted_index.granularity, | 146 |
| abstract_inverted_index.investigated | 39 |
| abstract_inverted_index.multivariate | 13 |
| abstract_inverted_index.performance. | 46 |
| abstract_inverted_index.correlations. | 76 |
| abstract_inverted_index.environments, | 86 |
| abstract_inverted_index.heterogeneity | 129 |
| abstract_inverted_index.heterogeneous | 85 |
| abstract_inverted_index.interventional | 60 |
| abstract_inverted_index.interventions. | 91 |
| abstract_inverted_index.non-intervened | 103, 142 |
| abstract_inverted_index.relationships. | 33 |
| abstract_inverted_index.identifiability | 157 |
| abstract_inverted_index.state-of-the-art | 178 |
| abstract_inverted_index.cross-environment | 128 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 4 |
| citation_normalized_percentile |