InvBFM: finding genomic inversions from high-throughput sequence data based on feature mining Article Swipe
YOU?
·
· 2020
· Open Access
·
· DOI: https://doi.org/10.1186/s12864-020-6585-1
Background Genomic inversion is one type of structural variations (SVs) and is known to play an important biological role. An established problem in sequence data analysis is calling inversions from high-throughput sequence data. It is more difficult to detect inversions because they are surrounded by duplication or other types of SVs in the inversion areas. Existing inversion detection tools are mainly based on three approaches: paired-end reads, split-mapped reads, and assembly. However, existing tools suffer from unsatisfying precision or sensitivity (eg: only 50~60% sensitivity) and it needs to be improved. Result In this paper, we present a new inversion calling method called InvBFM. InvBFM calls inversions based on feature mining. InvBFM first gathers the results of existing inversion detection tools as candidates for inversions. It then extracts features from the inversions. Finally, it calls the true inversions by a trained support vector machine (SVM) classifier. Conclusions Our results on real sequence data from the 1000 Genomes Project show that by combining feature mining and a machine learning model, InvBFM outperforms existing tools. InvBFM is written in Python and Shell and is available for download at https://github.com/wzj1234/InvBFM .
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1186/s12864-020-6585-1
- https://bmcgenomics.biomedcentral.com/track/pdf/10.1186/s12864-020-6585-1
- OA Status
- gold
- Cited By
- 4
- References
- 20
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W3009947873
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W3009947873Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1186/s12864-020-6585-1Digital Object Identifier
- Title
-
InvBFM: finding genomic inversions from high-throughput sequence data based on feature miningWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2020Year of publication
- Publication date
-
2020-03-01Full publication date if available
- Authors
-
Zhongjia Wu, Yufeng Wu, Jingyang GaoList of authors in order
- Landing page
-
https://doi.org/10.1186/s12864-020-6585-1Publisher landing page
- PDF URL
-
https://bmcgenomics.biomedcentral.com/track/pdf/10.1186/s12864-020-6585-1Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://bmcgenomics.biomedcentral.com/track/pdf/10.1186/s12864-020-6585-1Direct OA link when available
- Concepts
-
Python (programming language), Computer science, Support vector machine, Classifier (UML), Inversion (geology), Data mining, Artificial intelligence, Pattern recognition (psychology), Biology, Operating system, Structural basin, PaleontologyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
4Total citation count in OpenAlex
- Citations by year (recent)
-
2023: 2, 2022: 1, 2021: 1Per-year citation counts (last 5 years)
- References (count)
-
20Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W3009947873 |
|---|---|
| doi | https://doi.org/10.1186/s12864-020-6585-1 |
| ids.doi | https://doi.org/10.1186/s12864-020-6585-1 |
| ids.mag | 3009947873 |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/32138660 |
| ids.openalex | https://openalex.org/W3009947873 |
| fwci | 0.39010789 |
| mesh[0].qualifier_ui | Q000379 |
| mesh[0].descriptor_ui | D019295 |
| mesh[0].is_major_topic | False |
| mesh[0].qualifier_name | methods |
| mesh[0].descriptor_name | Computational Biology |
| mesh[1].qualifier_ui | |
| mesh[1].descriptor_ui | D057225 |
| mesh[1].is_major_topic | False |
| mesh[1].qualifier_name | |
| mesh[1].descriptor_name | Data Mining |
| mesh[2].qualifier_ui | |
| mesh[2].descriptor_ui | D059014 |
| mesh[2].is_major_topic | False |
| mesh[2].qualifier_name | |
| mesh[2].descriptor_name | High-Throughput Nucleotide Sequencing |
| mesh[3].qualifier_ui | |
| mesh[3].descriptor_ui | D020407 |
| mesh[3].is_major_topic | False |
| mesh[3].qualifier_name | |
| mesh[3].descriptor_name | Internet |
| mesh[4].qualifier_ui | Q000379 |
| mesh[4].descriptor_ui | D017422 |
| mesh[4].is_major_topic | False |
| mesh[4].qualifier_name | methods |
| mesh[4].descriptor_name | Sequence Analysis, DNA |
| mesh[5].qualifier_ui | |
| mesh[5].descriptor_ui | D057345 |
| mesh[5].is_major_topic | True |
| mesh[5].qualifier_name | |
| mesh[5].descriptor_name | Sequence Inversion |
| mesh[6].qualifier_ui | |
| mesh[6].descriptor_ui | D012984 |
| mesh[6].is_major_topic | False |
| mesh[6].qualifier_name | |
| mesh[6].descriptor_name | Software |
| mesh[7].qualifier_ui | |
| mesh[7].descriptor_ui | D060388 |
| mesh[7].is_major_topic | False |
| mesh[7].qualifier_name | |
| mesh[7].descriptor_name | Support Vector Machine |
| mesh[8].qualifier_ui | Q000379 |
| mesh[8].descriptor_ui | D019295 |
| mesh[8].is_major_topic | False |
| mesh[8].qualifier_name | methods |
| mesh[8].descriptor_name | Computational Biology |
| mesh[9].qualifier_ui | |
| mesh[9].descriptor_ui | D057225 |
| mesh[9].is_major_topic | False |
| mesh[9].qualifier_name | |
| mesh[9].descriptor_name | Data Mining |
| mesh[10].qualifier_ui | |
| mesh[10].descriptor_ui | D059014 |
| mesh[10].is_major_topic | False |
| mesh[10].qualifier_name | |
| mesh[10].descriptor_name | High-Throughput Nucleotide Sequencing |
| mesh[11].qualifier_ui | |
| mesh[11].descriptor_ui | D020407 |
| mesh[11].is_major_topic | False |
| mesh[11].qualifier_name | |
| mesh[11].descriptor_name | Internet |
| mesh[12].qualifier_ui | Q000379 |
| mesh[12].descriptor_ui | D017422 |
| mesh[12].is_major_topic | False |
| mesh[12].qualifier_name | methods |
| mesh[12].descriptor_name | Sequence Analysis, DNA |
| mesh[13].qualifier_ui | |
| mesh[13].descriptor_ui | D057345 |
| mesh[13].is_major_topic | True |
| mesh[13].qualifier_name | |
| mesh[13].descriptor_name | Sequence Inversion |
| mesh[14].qualifier_ui | |
| mesh[14].descriptor_ui | D012984 |
| mesh[14].is_major_topic | False |
| mesh[14].qualifier_name | |
| mesh[14].descriptor_name | Software |
| mesh[15].qualifier_ui | |
| mesh[15].descriptor_ui | D060388 |
| mesh[15].is_major_topic | False |
| mesh[15].qualifier_name | |
| mesh[15].descriptor_name | Support Vector Machine |
| type | article |
| title | InvBFM: finding genomic inversions from high-throughput sequence data based on feature mining |
| awards[0].id | https://openalex.org/G3556166335 |
| awards[0].funder_id | https://openalex.org/F4320322919 |
| awards[0].display_name | |
| awards[0].funder_award_id | 5182018 |
| awards[0].funder_display_name | Natural Science Foundation of Beijing Municipality |
| biblio.issue | S1 |
| biblio.volume | 21 |
| biblio.last_page | 173 |
| biblio.first_page | 173 |
| topics[0].id | https://openalex.org/T10015 |
| topics[0].field.id | https://openalex.org/fields/13 |
| topics[0].field.display_name | Biochemistry, Genetics and Molecular Biology |
| topics[0].score | 0.9998999834060669 |
| topics[0].domain.id | https://openalex.org/domains/1 |
| topics[0].domain.display_name | Life Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1312 |
| topics[0].subfield.display_name | Molecular Biology |
| topics[0].display_name | Genomics and Phylogenetic Studies |
| topics[1].id | https://openalex.org/T10885 |
| topics[1].field.id | https://openalex.org/fields/13 |
| topics[1].field.display_name | Biochemistry, Genetics and Molecular Biology |
| topics[1].score | 0.9965999722480774 |
| topics[1].domain.id | https://openalex.org/domains/1 |
| topics[1].domain.display_name | Life Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1312 |
| topics[1].subfield.display_name | Molecular Biology |
| topics[1].display_name | Gene expression and cancer classification |
| topics[2].id | https://openalex.org/T11269 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.994700014591217 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1702 |
| topics[2].subfield.display_name | Artificial Intelligence |
| topics[2].display_name | Algorithms and Data Compression |
| funders[0].id | https://openalex.org/F4320322919 |
| funders[0].ror | |
| funders[0].display_name | Natural Science Foundation of Beijing Municipality |
| is_xpac | False |
| apc_list.value | 1570 |
| apc_list.currency | GBP |
| apc_list.value_usd | 1925 |
| apc_paid.value | 1570 |
| apc_paid.currency | GBP |
| apc_paid.value_usd | 1925 |
| concepts[0].id | https://openalex.org/C519991488 |
| concepts[0].level | 2 |
| concepts[0].score | 0.6261975765228271 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q28865 |
| concepts[0].display_name | Python (programming language) |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.6178155541419983 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C12267149 |
| concepts[2].level | 2 |
| concepts[2].score | 0.5976067185401917 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q282453 |
| concepts[2].display_name | Support vector machine |
| concepts[3].id | https://openalex.org/C95623464 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5557931065559387 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q1096149 |
| concepts[3].display_name | Classifier (UML) |
| concepts[4].id | https://openalex.org/C1893757 |
| concepts[4].level | 3 |
| concepts[4].score | 0.5038582682609558 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q3653001 |
| concepts[4].display_name | Inversion (geology) |
| concepts[5].id | https://openalex.org/C124101348 |
| concepts[5].level | 1 |
| concepts[5].score | 0.4929056167602539 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q172491 |
| concepts[5].display_name | Data mining |
| concepts[6].id | https://openalex.org/C154945302 |
| concepts[6].level | 1 |
| concepts[6].score | 0.4149675965309143 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[6].display_name | Artificial intelligence |
| concepts[7].id | https://openalex.org/C153180895 |
| concepts[7].level | 2 |
| concepts[7].score | 0.37653088569641113 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[7].display_name | Pattern recognition (psychology) |
| concepts[8].id | https://openalex.org/C86803240 |
| concepts[8].level | 0 |
| concepts[8].score | 0.25022995471954346 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q420 |
| concepts[8].display_name | Biology |
| concepts[9].id | https://openalex.org/C111919701 |
| concepts[9].level | 1 |
| concepts[9].score | 0.0 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q9135 |
| concepts[9].display_name | Operating system |
| concepts[10].id | https://openalex.org/C109007969 |
| concepts[10].level | 2 |
| concepts[10].score | 0.0 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q749565 |
| concepts[10].display_name | Structural basin |
| concepts[11].id | https://openalex.org/C151730666 |
| concepts[11].level | 1 |
| concepts[11].score | 0.0 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q7205 |
| concepts[11].display_name | Paleontology |
| keywords[0].id | https://openalex.org/keywords/python |
| keywords[0].score | 0.6261975765228271 |
| keywords[0].display_name | Python (programming language) |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.6178155541419983 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/support-vector-machine |
| keywords[2].score | 0.5976067185401917 |
| keywords[2].display_name | Support vector machine |
| keywords[3].id | https://openalex.org/keywords/classifier |
| keywords[3].score | 0.5557931065559387 |
| keywords[3].display_name | Classifier (UML) |
| keywords[4].id | https://openalex.org/keywords/inversion |
| keywords[4].score | 0.5038582682609558 |
| keywords[4].display_name | Inversion (geology) |
| keywords[5].id | https://openalex.org/keywords/data-mining |
| keywords[5].score | 0.4929056167602539 |
| keywords[5].display_name | Data mining |
| keywords[6].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[6].score | 0.4149675965309143 |
| keywords[6].display_name | Artificial intelligence |
| keywords[7].id | https://openalex.org/keywords/pattern-recognition |
| keywords[7].score | 0.37653088569641113 |
| keywords[7].display_name | Pattern recognition (psychology) |
| keywords[8].id | https://openalex.org/keywords/biology |
| keywords[8].score | 0.25022995471954346 |
| keywords[8].display_name | Biology |
| language | en |
| locations[0].id | doi:10.1186/s12864-020-6585-1 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S28614077 |
| locations[0].source.issn | 1471-2164 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 1471-2164 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | BMC Genomics |
| locations[0].source.host_organization | https://openalex.org/P4310320256 |
| locations[0].source.host_organization_name | BioMed Central |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320256, https://openalex.org/P4310319965 |
| locations[0].source.host_organization_lineage_names | BioMed Central, Springer Nature |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://bmcgenomics.biomedcentral.com/track/pdf/10.1186/s12864-020-6585-1 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | BMC Genomics |
| locations[0].landing_page_url | https://doi.org/10.1186/s12864-020-6585-1 |
| locations[1].id | pmid:32138660 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306525036 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | BMC genomics |
| locations[1].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/32138660 |
| locations[2].id | pmh:oai:doaj.org/article:06ce62c8738d4aa88c14aee69d2d03a5 |
| locations[2].is_oa | False |
| locations[2].source.id | https://openalex.org/S4306401280 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[2].source.host_organization | |
| locations[2].source.host_organization_name | |
| locations[2].license | |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | article |
| locations[2].license_id | |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | BMC Genomics, Vol 21, Iss S1, Pp 1-10 (2020) |
| locations[2].landing_page_url | https://doaj.org/article/06ce62c8738d4aa88c14aee69d2d03a5 |
| locations[3].id | pmh:oai:pubmedcentral.nih.gov:7057458 |
| locations[3].is_oa | True |
| locations[3].source.id | https://openalex.org/S2764455111 |
| locations[3].source.issn | |
| locations[3].source.type | repository |
| locations[3].source.is_oa | False |
| locations[3].source.issn_l | |
| locations[3].source.is_core | False |
| locations[3].source.is_in_doaj | False |
| locations[3].source.display_name | PubMed Central |
| locations[3].source.host_organization | https://openalex.org/I1299303238 |
| locations[3].source.host_organization_name | National Institutes of Health |
| locations[3].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[3].license | other-oa |
| locations[3].pdf_url | |
| locations[3].version | submittedVersion |
| locations[3].raw_type | Text |
| locations[3].license_id | https://openalex.org/licenses/other-oa |
| locations[3].is_accepted | False |
| locations[3].is_published | False |
| locations[3].raw_source_name | BMC Genomics |
| locations[3].landing_page_url | https://www.ncbi.nlm.nih.gov/pmc/articles/7057458 |
| indexed_in | crossref, doaj, pubmed |
| authorships[0].author.id | https://openalex.org/A5074158237 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Zhongjia Wu |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I75390827 |
| authorships[0].affiliations[0].raw_affiliation_string | College of Information Science and Technology, Beijing University of Chemical Technology, Beijing, People's Republic of China |
| authorships[0].institutions[0].id | https://openalex.org/I75390827 |
| authorships[0].institutions[0].ror | https://ror.org/00df5yc52 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I75390827 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Beijing University of Chemical Technology |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Zhongjia Wu |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | College of Information Science and Technology, Beijing University of Chemical Technology, Beijing, People's Republic of China |
| authorships[1].author.id | https://openalex.org/A5101579568 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-4988-3521 |
| authorships[1].author.display_name | Yufeng Wu |
| authorships[1].countries | US |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I140172145 |
| authorships[1].affiliations[0].raw_affiliation_string | Department of Computer Science and Engineering, University of Connecticut, Storrs, Connecticut, USA |
| authorships[1].institutions[0].id | https://openalex.org/I140172145 |
| authorships[1].institutions[0].ror | https://ror.org/02der9h97 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I140172145 |
| authorships[1].institutions[0].country_code | US |
| authorships[1].institutions[0].display_name | University of Connecticut |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Yufeng Wu |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Department of Computer Science and Engineering, University of Connecticut, Storrs, Connecticut, USA |
| authorships[2].author.id | https://openalex.org/A5078894109 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-1270-6257 |
| authorships[2].author.display_name | Jingyang Gao |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I75390827 |
| authorships[2].affiliations[0].raw_affiliation_string | College of Information Science and Technology, Beijing University of Chemical Technology, Beijing, People's Republic of China |
| authorships[2].institutions[0].id | https://openalex.org/I75390827 |
| authorships[2].institutions[0].ror | https://ror.org/00df5yc52 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I75390827 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | Beijing University of Chemical Technology |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Jingyang Gao |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | College of Information Science and Technology, Beijing University of Chemical Technology, Beijing, People's Republic of China |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://bmcgenomics.biomedcentral.com/track/pdf/10.1186/s12864-020-6585-1 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | InvBFM: finding genomic inversions from high-throughput sequence data based on feature mining |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10015 |
| primary_topic.field.id | https://openalex.org/fields/13 |
| primary_topic.field.display_name | Biochemistry, Genetics and Molecular Biology |
| primary_topic.score | 0.9998999834060669 |
| primary_topic.domain.id | https://openalex.org/domains/1 |
| primary_topic.domain.display_name | Life Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1312 |
| primary_topic.subfield.display_name | Molecular Biology |
| primary_topic.display_name | Genomics and Phylogenetic Studies |
| related_works | https://openalex.org/W2341492732, https://openalex.org/W3187193180, https://openalex.org/W106542691, https://openalex.org/W4287027380, https://openalex.org/W1699080303, https://openalex.org/W4297799326, https://openalex.org/W3116064965, https://openalex.org/W3193760048, https://openalex.org/W4285822516, https://openalex.org/W2551200859 |
| cited_by_count | 4 |
| counts_by_year[0].year | 2023 |
| counts_by_year[0].cited_by_count | 2 |
| counts_by_year[1].year | 2022 |
| counts_by_year[1].cited_by_count | 1 |
| counts_by_year[2].year | 2021 |
| counts_by_year[2].cited_by_count | 1 |
| locations_count | 4 |
| best_oa_location.id | doi:10.1186/s12864-020-6585-1 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S28614077 |
| best_oa_location.source.issn | 1471-2164 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 1471-2164 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | BMC Genomics |
| best_oa_location.source.host_organization | https://openalex.org/P4310320256 |
| best_oa_location.source.host_organization_name | BioMed Central |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310320256, https://openalex.org/P4310319965 |
| best_oa_location.source.host_organization_lineage_names | BioMed Central, Springer Nature |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://bmcgenomics.biomedcentral.com/track/pdf/10.1186/s12864-020-6585-1 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | BMC Genomics |
| best_oa_location.landing_page_url | https://doi.org/10.1186/s12864-020-6585-1 |
| primary_location.id | doi:10.1186/s12864-020-6585-1 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S28614077 |
| primary_location.source.issn | 1471-2164 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 1471-2164 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | BMC Genomics |
| primary_location.source.host_organization | https://openalex.org/P4310320256 |
| primary_location.source.host_organization_name | BioMed Central |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320256, https://openalex.org/P4310319965 |
| primary_location.source.host_organization_lineage_names | BioMed Central, Springer Nature |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://bmcgenomics.biomedcentral.com/track/pdf/10.1186/s12864-020-6585-1 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | BMC Genomics |
| primary_location.landing_page_url | https://doi.org/10.1186/s12864-020-6585-1 |
| publication_date | 2020-03-01 |
| publication_year | 2020 |
| referenced_works | https://openalex.org/W2104549677, https://openalex.org/W2952067146, https://openalex.org/W2150131459, https://openalex.org/W4253663768, https://openalex.org/W2194510225, https://openalex.org/W2766010044, https://openalex.org/W2142281773, https://openalex.org/W2116305743, https://openalex.org/W2160261558, https://openalex.org/W2362469198, https://openalex.org/W2154397429, https://openalex.org/W2146005104, https://openalex.org/W2111350087, https://openalex.org/W2579860549, https://openalex.org/W4253171146, https://openalex.org/W2249178465, https://openalex.org/W2111377561, https://openalex.org/W2117131162, https://openalex.org/W2340802671, https://openalex.org/W2615547322 |
| referenced_works_count | 20 |
| abstract_inverted_index.. | 187 |
| abstract_inverted_index.a | 97, 139, 165 |
| abstract_inverted_index.An | 20 |
| abstract_inverted_index.In | 92 |
| abstract_inverted_index.It | 34, 125 |
| abstract_inverted_index.an | 16 |
| abstract_inverted_index.as | 121 |
| abstract_inverted_index.at | 185 |
| abstract_inverted_index.be | 89 |
| abstract_inverted_index.by | 45, 138, 160 |
| abstract_inverted_index.in | 23, 52, 176 |
| abstract_inverted_index.is | 4, 12, 27, 35, 174, 181 |
| abstract_inverted_index.it | 86, 133 |
| abstract_inverted_index.of | 7, 50, 116 |
| abstract_inverted_index.on | 63, 108, 149 |
| abstract_inverted_index.or | 47, 79 |
| abstract_inverted_index.to | 14, 38, 88 |
| abstract_inverted_index.we | 95 |
| abstract_inverted_index.Our | 147 |
| abstract_inverted_index.SVs | 51 |
| abstract_inverted_index.and | 11, 70, 85, 164, 178, 180 |
| abstract_inverted_index.are | 43, 60 |
| abstract_inverted_index.for | 123, 183 |
| abstract_inverted_index.new | 98 |
| abstract_inverted_index.one | 5 |
| abstract_inverted_index.the | 53, 114, 130, 135, 154 |
| abstract_inverted_index.(eg: | 81 |
| abstract_inverted_index.1000 | 155 |
| abstract_inverted_index.data | 25, 152 |
| abstract_inverted_index.from | 30, 76, 129, 153 |
| abstract_inverted_index.more | 36 |
| abstract_inverted_index.only | 82 |
| abstract_inverted_index.play | 15 |
| abstract_inverted_index.real | 150 |
| abstract_inverted_index.show | 158 |
| abstract_inverted_index.that | 159 |
| abstract_inverted_index.then | 126 |
| abstract_inverted_index.they | 42 |
| abstract_inverted_index.this | 93 |
| abstract_inverted_index.true | 136 |
| abstract_inverted_index.type | 6 |
| abstract_inverted_index.(SVM) | 144 |
| abstract_inverted_index.(SVs) | 10 |
| abstract_inverted_index.Shell | 179 |
| abstract_inverted_index.based | 62, 107 |
| abstract_inverted_index.calls | 105, 134 |
| abstract_inverted_index.data. | 33 |
| abstract_inverted_index.first | 112 |
| abstract_inverted_index.known | 13 |
| abstract_inverted_index.needs | 87 |
| abstract_inverted_index.other | 48 |
| abstract_inverted_index.role. | 19 |
| abstract_inverted_index.three | 64 |
| abstract_inverted_index.tools | 59, 74, 120 |
| abstract_inverted_index.types | 49 |
| abstract_inverted_index.50~60% | 83 |
| abstract_inverted_index.InvBFM | 104, 111, 169, 173 |
| abstract_inverted_index.Python | 177 |
| abstract_inverted_index.Result | 91 |
| abstract_inverted_index.areas. | 55 |
| abstract_inverted_index.called | 102 |
| abstract_inverted_index.detect | 39 |
| abstract_inverted_index.mainly | 61 |
| abstract_inverted_index.method | 101 |
| abstract_inverted_index.mining | 163 |
| abstract_inverted_index.model, | 168 |
| abstract_inverted_index.paper, | 94 |
| abstract_inverted_index.reads, | 67, 69 |
| abstract_inverted_index.suffer | 75 |
| abstract_inverted_index.tools. | 172 |
| abstract_inverted_index.vector | 142 |
| abstract_inverted_index.Genomes | 156 |
| abstract_inverted_index.Genomic | 2 |
| abstract_inverted_index.InvBFM. | 103 |
| abstract_inverted_index.Project | 157 |
| abstract_inverted_index.because | 41 |
| abstract_inverted_index.calling | 28, 100 |
| abstract_inverted_index.feature | 109, 162 |
| abstract_inverted_index.gathers | 113 |
| abstract_inverted_index.machine | 143, 166 |
| abstract_inverted_index.mining. | 110 |
| abstract_inverted_index.present | 96 |
| abstract_inverted_index.problem | 22 |
| abstract_inverted_index.results | 115, 148 |
| abstract_inverted_index.support | 141 |
| abstract_inverted_index.trained | 140 |
| abstract_inverted_index.written | 175 |
| abstract_inverted_index.Abstract | 0 |
| abstract_inverted_index.Existing | 56 |
| abstract_inverted_index.Finally, | 132 |
| abstract_inverted_index.However, | 72 |
| abstract_inverted_index.analysis | 26 |
| abstract_inverted_index.download | 184 |
| abstract_inverted_index.existing | 73, 117, 171 |
| abstract_inverted_index.extracts | 127 |
| abstract_inverted_index.features | 128 |
| abstract_inverted_index.learning | 167 |
| abstract_inverted_index.sequence | 24, 32, 151 |
| abstract_inverted_index.assembly. | 71 |
| abstract_inverted_index.available | 182 |
| abstract_inverted_index.combining | 161 |
| abstract_inverted_index.detection | 58, 119 |
| abstract_inverted_index.difficult | 37 |
| abstract_inverted_index.important | 17 |
| abstract_inverted_index.improved. | 90 |
| abstract_inverted_index.inversion | 3, 54, 57, 99, 118 |
| abstract_inverted_index.precision | 78 |
| abstract_inverted_index.Background | 1 |
| abstract_inverted_index.biological | 18 |
| abstract_inverted_index.candidates | 122 |
| abstract_inverted_index.inversions | 29, 40, 106, 137 |
| abstract_inverted_index.paired-end | 66 |
| abstract_inverted_index.structural | 8 |
| abstract_inverted_index.surrounded | 44 |
| abstract_inverted_index.variations | 9 |
| abstract_inverted_index.Conclusions | 146 |
| abstract_inverted_index.approaches: | 65 |
| abstract_inverted_index.classifier. | 145 |
| abstract_inverted_index.duplication | 46 |
| abstract_inverted_index.established | 21 |
| abstract_inverted_index.inversions. | 124, 131 |
| abstract_inverted_index.outperforms | 170 |
| abstract_inverted_index.sensitivity | 80 |
| abstract_inverted_index.sensitivity) | 84 |
| abstract_inverted_index.split-mapped | 68 |
| abstract_inverted_index.unsatisfying | 77 |
| abstract_inverted_index.high-throughput | 31 |
| abstract_inverted_index.https://github.com/wzj1234/InvBFM | 186 |
| cited_by_percentile_year.max | 96 |
| cited_by_percentile_year.min | 89 |
| countries_distinct_count | 2 |
| institutions_distinct_count | 3 |
| citation_normalized_percentile.value | 0.57939855 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |