Inverse synthetic aperture radar imaging of targets with complex motion based on the local polynomial ambiguity function Article Swipe
YOU?
·
· 2016
· Open Access
·
· DOI: https://doi.org/10.1117/1.jrs.10.015019
In inverse synthetic aperture radar (ISAR) imaging of targets with complex motion, the azimuth echoes have to be modeled as multicomponent cubic phase signals (CPSs) after motion compensation. For the CPS model, the chirp rate and the quadratic chirp rate deteriorate the ISAR image quality due to the Doppler frequency shift; thus, an effective parameter estimation algorithm is required. This paper focuses on a parameter estimation algorithm for multicomponent CPSs based on the local polynomial ambiguity function (LPAF), which is simple and can be easily implemented via the complex multiplication and fast Fourier transform. Compared with the existing parameter estimation algorithm for CPS, the proposed algorithm can achieve a better compromise between performance and computational complexity. Then, the high-quality ISAR image can be obtained by the proposed LPAF-based ISAR imaging algorithm. The results of the simulated data demonstrate the effectiveness of the proposed algorithm.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1117/1.jrs.10.015019
- https://www.spiedigitallibrary.org/journals/Journal-of-Applied-Remote-Sensing/volume-10/issue-1/015019/Inverse-synthetic-aperture-radar-imaging-of-targets-with-complex-motion/10.1117/1.JRS.10.015019.pdf
- OA Status
- bronze
- Cited By
- 12
- References
- 32
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W2300542182
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W2300542182Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1117/1.jrs.10.015019Digital Object Identifier
- Title
-
Inverse synthetic aperture radar imaging of targets with complex motion based on the local polynomial ambiguity functionWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2016Year of publication
- Publication date
-
2016-03-18Full publication date if available
- Authors
-
Qian Lv, Tao Su, Jibin ZhengList of authors in order
- Landing page
-
https://doi.org/10.1117/1.jrs.10.015019Publisher landing page
- PDF URL
-
https://www.spiedigitallibrary.org/journals/Journal-of-Applied-Remote-Sensing/volume-10/issue-1/015019/Inverse-synthetic-aperture-radar-imaging-of-targets-with-complex-motion/10.1117/1.JRS.10.015019.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
bronzeOpen access status per OpenAlex
- OA URL
-
https://www.spiedigitallibrary.org/journals/Journal-of-Applied-Remote-Sensing/volume-10/issue-1/015019/Inverse-synthetic-aperture-radar-imaging-of-targets-with-complex-motion/10.1117/1.JRS.10.015019.pdfDirect OA link when available
- Concepts
-
Inverse synthetic aperture radar, Synthetic aperture radar, Computer science, Algorithm, Chirp, Radar imaging, Ambiguity function, Motion compensation, Azimuth, Computational complexity theory, Polynomial, Computer vision, Estimation theory, Artificial intelligence, Radar, Mathematics, Optics, Telecommunications, Physics, Waveform, Laser, Mathematical analysisTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
12Total citation count in OpenAlex
- Citations by year (recent)
-
2021: 1, 2020: 1, 2019: 3, 2018: 2, 2017: 3Per-year citation counts (last 5 years)
- References (count)
-
32Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W2300542182 |
|---|---|
| doi | https://doi.org/10.1117/1.jrs.10.015019 |
| ids.doi | https://doi.org/10.1117/1.jrs.10.015019 |
| ids.mag | 2300542182 |
| ids.openalex | https://openalex.org/W2300542182 |
| fwci | 5.26558059 |
| type | article |
| title | Inverse synthetic aperture radar imaging of targets with complex motion based on the local polynomial ambiguity function |
| biblio.issue | 1 |
| biblio.volume | 10 |
| biblio.last_page | 015019 |
| biblio.first_page | 015019 |
| topics[0].id | https://openalex.org/T11038 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.9998999834060669 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2202 |
| topics[0].subfield.display_name | Aerospace Engineering |
| topics[0].display_name | Advanced SAR Imaging Techniques |
| topics[1].id | https://openalex.org/T11739 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.998199999332428 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2204 |
| topics[1].subfield.display_name | Biomedical Engineering |
| topics[1].display_name | Microwave Imaging and Scattering Analysis |
| topics[2].id | https://openalex.org/T10662 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.9980999827384949 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2211 |
| topics[2].subfield.display_name | Mechanics of Materials |
| topics[2].display_name | Ultrasonics and Acoustic Wave Propagation |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C109094680 |
| concepts[0].level | 4 |
| concepts[0].score | 0.8639662265777588 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q6060432 |
| concepts[0].display_name | Inverse synthetic aperture radar |
| concepts[1].id | https://openalex.org/C87360688 |
| concepts[1].level | 2 |
| concepts[1].score | 0.7268359065055847 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q740686 |
| concepts[1].display_name | Synthetic aperture radar |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.6610825657844543 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| concepts[3].id | https://openalex.org/C11413529 |
| concepts[3].level | 1 |
| concepts[3].score | 0.5920482873916626 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[3].display_name | Algorithm |
| concepts[4].id | https://openalex.org/C132794960 |
| concepts[4].level | 3 |
| concepts[4].score | 0.5914875268936157 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q27304 |
| concepts[4].display_name | Chirp |
| concepts[5].id | https://openalex.org/C10929652 |
| concepts[5].level | 3 |
| concepts[5].score | 0.5835364460945129 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q7279985 |
| concepts[5].display_name | Radar imaging |
| concepts[6].id | https://openalex.org/C50878840 |
| concepts[6].level | 4 |
| concepts[6].score | 0.5832749605178833 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q3206297 |
| concepts[6].display_name | Ambiguity function |
| concepts[7].id | https://openalex.org/C128840427 |
| concepts[7].level | 2 |
| concepts[7].score | 0.5071759223937988 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q1302174 |
| concepts[7].display_name | Motion compensation |
| concepts[8].id | https://openalex.org/C159737794 |
| concepts[8].level | 2 |
| concepts[8].score | 0.5011553764343262 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q124274 |
| concepts[8].display_name | Azimuth |
| concepts[9].id | https://openalex.org/C179799912 |
| concepts[9].level | 2 |
| concepts[9].score | 0.4593437612056732 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q205084 |
| concepts[9].display_name | Computational complexity theory |
| concepts[10].id | https://openalex.org/C90119067 |
| concepts[10].level | 2 |
| concepts[10].score | 0.4578079879283905 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q43260 |
| concepts[10].display_name | Polynomial |
| concepts[11].id | https://openalex.org/C31972630 |
| concepts[11].level | 1 |
| concepts[11].score | 0.4484442174434662 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q844240 |
| concepts[11].display_name | Computer vision |
| concepts[12].id | https://openalex.org/C167928553 |
| concepts[12].level | 2 |
| concepts[12].score | 0.44526782631874084 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q1376021 |
| concepts[12].display_name | Estimation theory |
| concepts[13].id | https://openalex.org/C154945302 |
| concepts[13].level | 1 |
| concepts[13].score | 0.3928269147872925 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[13].display_name | Artificial intelligence |
| concepts[14].id | https://openalex.org/C554190296 |
| concepts[14].level | 2 |
| concepts[14].score | 0.3189968764781952 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q47528 |
| concepts[14].display_name | Radar |
| concepts[15].id | https://openalex.org/C33923547 |
| concepts[15].level | 0 |
| concepts[15].score | 0.2406817078590393 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[15].display_name | Mathematics |
| concepts[16].id | https://openalex.org/C120665830 |
| concepts[16].level | 1 |
| concepts[16].score | 0.2246982753276825 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q14620 |
| concepts[16].display_name | Optics |
| concepts[17].id | https://openalex.org/C76155785 |
| concepts[17].level | 1 |
| concepts[17].score | 0.13341552019119263 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q418 |
| concepts[17].display_name | Telecommunications |
| concepts[18].id | https://openalex.org/C121332964 |
| concepts[18].level | 0 |
| concepts[18].score | 0.12252742052078247 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[18].display_name | Physics |
| concepts[19].id | https://openalex.org/C197424946 |
| concepts[19].level | 3 |
| concepts[19].score | 0.0 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q1165717 |
| concepts[19].display_name | Waveform |
| concepts[20].id | https://openalex.org/C520434653 |
| concepts[20].level | 2 |
| concepts[20].score | 0.0 |
| concepts[20].wikidata | https://www.wikidata.org/wiki/Q38867 |
| concepts[20].display_name | Laser |
| concepts[21].id | https://openalex.org/C134306372 |
| concepts[21].level | 1 |
| concepts[21].score | 0.0 |
| concepts[21].wikidata | https://www.wikidata.org/wiki/Q7754 |
| concepts[21].display_name | Mathematical analysis |
| keywords[0].id | https://openalex.org/keywords/inverse-synthetic-aperture-radar |
| keywords[0].score | 0.8639662265777588 |
| keywords[0].display_name | Inverse synthetic aperture radar |
| keywords[1].id | https://openalex.org/keywords/synthetic-aperture-radar |
| keywords[1].score | 0.7268359065055847 |
| keywords[1].display_name | Synthetic aperture radar |
| keywords[2].id | https://openalex.org/keywords/computer-science |
| keywords[2].score | 0.6610825657844543 |
| keywords[2].display_name | Computer science |
| keywords[3].id | https://openalex.org/keywords/algorithm |
| keywords[3].score | 0.5920482873916626 |
| keywords[3].display_name | Algorithm |
| keywords[4].id | https://openalex.org/keywords/chirp |
| keywords[4].score | 0.5914875268936157 |
| keywords[4].display_name | Chirp |
| keywords[5].id | https://openalex.org/keywords/radar-imaging |
| keywords[5].score | 0.5835364460945129 |
| keywords[5].display_name | Radar imaging |
| keywords[6].id | https://openalex.org/keywords/ambiguity-function |
| keywords[6].score | 0.5832749605178833 |
| keywords[6].display_name | Ambiguity function |
| keywords[7].id | https://openalex.org/keywords/motion-compensation |
| keywords[7].score | 0.5071759223937988 |
| keywords[7].display_name | Motion compensation |
| keywords[8].id | https://openalex.org/keywords/azimuth |
| keywords[8].score | 0.5011553764343262 |
| keywords[8].display_name | Azimuth |
| keywords[9].id | https://openalex.org/keywords/computational-complexity-theory |
| keywords[9].score | 0.4593437612056732 |
| keywords[9].display_name | Computational complexity theory |
| keywords[10].id | https://openalex.org/keywords/polynomial |
| keywords[10].score | 0.4578079879283905 |
| keywords[10].display_name | Polynomial |
| keywords[11].id | https://openalex.org/keywords/computer-vision |
| keywords[11].score | 0.4484442174434662 |
| keywords[11].display_name | Computer vision |
| keywords[12].id | https://openalex.org/keywords/estimation-theory |
| keywords[12].score | 0.44526782631874084 |
| keywords[12].display_name | Estimation theory |
| keywords[13].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[13].score | 0.3928269147872925 |
| keywords[13].display_name | Artificial intelligence |
| keywords[14].id | https://openalex.org/keywords/radar |
| keywords[14].score | 0.3189968764781952 |
| keywords[14].display_name | Radar |
| keywords[15].id | https://openalex.org/keywords/mathematics |
| keywords[15].score | 0.2406817078590393 |
| keywords[15].display_name | Mathematics |
| keywords[16].id | https://openalex.org/keywords/optics |
| keywords[16].score | 0.2246982753276825 |
| keywords[16].display_name | Optics |
| keywords[17].id | https://openalex.org/keywords/telecommunications |
| keywords[17].score | 0.13341552019119263 |
| keywords[17].display_name | Telecommunications |
| keywords[18].id | https://openalex.org/keywords/physics |
| keywords[18].score | 0.12252742052078247 |
| keywords[18].display_name | Physics |
| language | en |
| locations[0].id | doi:10.1117/1.jrs.10.015019 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S78067151 |
| locations[0].source.issn | 1931-3195 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | 1931-3195 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Journal of Applied Remote Sensing |
| locations[0].source.host_organization | https://openalex.org/P4310315543 |
| locations[0].source.host_organization_name | SPIE |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310315543 |
| locations[0].license | |
| locations[0].pdf_url | https://www.spiedigitallibrary.org/journals/Journal-of-Applied-Remote-Sensing/volume-10/issue-1/015019/Inverse-synthetic-aperture-radar-imaging-of-targets-with-complex-motion/10.1117/1.JRS.10.015019.pdf |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Journal of Applied Remote Sensing |
| locations[0].landing_page_url | https://doi.org/10.1117/1.jrs.10.015019 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5074161354 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-7874-7871 |
| authorships[0].author.display_name | Qian Lv |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I149594827 |
| authorships[0].affiliations[0].raw_affiliation_string | Xidian Univ. (China) |
| authorships[0].institutions[0].id | https://openalex.org/I149594827 |
| authorships[0].institutions[0].ror | https://ror.org/05s92vm98 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I149594827 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Xidian University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Qian Lv |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Xidian Univ. (China) |
| authorships[1].author.id | https://openalex.org/A5111279596 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Tao Su |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I149594827 |
| authorships[1].affiliations[0].raw_affiliation_string | Xidian Univ. (China) |
| authorships[1].institutions[0].id | https://openalex.org/I149594827 |
| authorships[1].institutions[0].ror | https://ror.org/05s92vm98 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I149594827 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Xidian University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Tao Su |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Xidian Univ. (China) |
| authorships[2].author.id | https://openalex.org/A5100633345 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-7144-8388 |
| authorships[2].author.display_name | Jibin Zheng |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I149594827 |
| authorships[2].affiliations[0].raw_affiliation_string | Xidian Univ. (China) |
| authorships[2].institutions[0].id | https://openalex.org/I149594827 |
| authorships[2].institutions[0].ror | https://ror.org/05s92vm98 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I149594827 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | Xidian University |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Jibin Zheng |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Xidian Univ. (China) |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.spiedigitallibrary.org/journals/Journal-of-Applied-Remote-Sensing/volume-10/issue-1/015019/Inverse-synthetic-aperture-radar-imaging-of-targets-with-complex-motion/10.1117/1.JRS.10.015019.pdf |
| open_access.oa_status | bronze |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Inverse synthetic aperture radar imaging of targets with complex motion based on the local polynomial ambiguity function |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11038 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.9998999834060669 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2202 |
| primary_topic.subfield.display_name | Aerospace Engineering |
| primary_topic.display_name | Advanced SAR Imaging Techniques |
| related_works | https://openalex.org/W2088283703, https://openalex.org/W2119869625, https://openalex.org/W2354389511, https://openalex.org/W2140944036, https://openalex.org/W2007886977, https://openalex.org/W2350566760, https://openalex.org/W2123767128, https://openalex.org/W2003459708, https://openalex.org/W2901787195, https://openalex.org/W2758780897 |
| cited_by_count | 12 |
| counts_by_year[0].year | 2021 |
| counts_by_year[0].cited_by_count | 1 |
| counts_by_year[1].year | 2020 |
| counts_by_year[1].cited_by_count | 1 |
| counts_by_year[2].year | 2019 |
| counts_by_year[2].cited_by_count | 3 |
| counts_by_year[3].year | 2018 |
| counts_by_year[3].cited_by_count | 2 |
| counts_by_year[4].year | 2017 |
| counts_by_year[4].cited_by_count | 3 |
| counts_by_year[5].year | 2016 |
| counts_by_year[5].cited_by_count | 2 |
| locations_count | 1 |
| best_oa_location.id | doi:10.1117/1.jrs.10.015019 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S78067151 |
| best_oa_location.source.issn | 1931-3195 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | 1931-3195 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Journal of Applied Remote Sensing |
| best_oa_location.source.host_organization | https://openalex.org/P4310315543 |
| best_oa_location.source.host_organization_name | SPIE |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310315543 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://www.spiedigitallibrary.org/journals/Journal-of-Applied-Remote-Sensing/volume-10/issue-1/015019/Inverse-synthetic-aperture-radar-imaging-of-targets-with-complex-motion/10.1117/1.JRS.10.015019.pdf |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Journal of Applied Remote Sensing |
| best_oa_location.landing_page_url | https://doi.org/10.1117/1.jrs.10.015019 |
| primary_location.id | doi:10.1117/1.jrs.10.015019 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S78067151 |
| primary_location.source.issn | 1931-3195 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | 1931-3195 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Journal of Applied Remote Sensing |
| primary_location.source.host_organization | https://openalex.org/P4310315543 |
| primary_location.source.host_organization_name | SPIE |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310315543 |
| primary_location.license | |
| primary_location.pdf_url | https://www.spiedigitallibrary.org/journals/Journal-of-Applied-Remote-Sensing/volume-10/issue-1/015019/Inverse-synthetic-aperture-radar-imaging-of-targets-with-complex-motion/10.1117/1.JRS.10.015019.pdf |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Journal of Applied Remote Sensing |
| primary_location.landing_page_url | https://doi.org/10.1117/1.jrs.10.015019 |
| publication_date | 2016-03-18 |
| publication_year | 2016 |
| referenced_works | https://openalex.org/W2146554500, https://openalex.org/W2099628041, https://openalex.org/W2124596920, https://openalex.org/W1996561010, https://openalex.org/W2102707018, https://openalex.org/W1988133852, https://openalex.org/W2157023423, https://openalex.org/W2119644817, https://openalex.org/W2031356601, https://openalex.org/W2163691983, https://openalex.org/W2050206299, https://openalex.org/W2029720993, https://openalex.org/W2064232121, https://openalex.org/W2267235340, https://openalex.org/W2139106846, https://openalex.org/W2121187169, https://openalex.org/W2039644648, https://openalex.org/W2159484283, https://openalex.org/W2166785746, https://openalex.org/W2016971088, https://openalex.org/W2027807409, https://openalex.org/W2072915577, https://openalex.org/W2091155613, https://openalex.org/W2036592393, https://openalex.org/W2110965352, https://openalex.org/W1914224353, https://openalex.org/W2145017037, https://openalex.org/W2155025946, https://openalex.org/W2011422963, https://openalex.org/W2170021087, https://openalex.org/W2162267159, https://openalex.org/W4285719527 |
| referenced_works_count | 32 |
| abstract_inverted_index.a | 63, 108 |
| abstract_inverted_index.In | 0 |
| abstract_inverted_index.an | 52 |
| abstract_inverted_index.as | 19 |
| abstract_inverted_index.be | 17, 83, 122 |
| abstract_inverted_index.by | 124 |
| abstract_inverted_index.is | 57, 79 |
| abstract_inverted_index.of | 7, 133, 140 |
| abstract_inverted_index.on | 62, 71 |
| abstract_inverted_index.to | 16, 46 |
| abstract_inverted_index.CPS | 30 |
| abstract_inverted_index.For | 28 |
| abstract_inverted_index.The | 131 |
| abstract_inverted_index.and | 35, 81, 90, 113 |
| abstract_inverted_index.can | 82, 106, 121 |
| abstract_inverted_index.due | 45 |
| abstract_inverted_index.for | 67, 101 |
| abstract_inverted_index.the | 12, 29, 32, 36, 41, 47, 72, 87, 96, 103, 117, 125, 134, 138, 141 |
| abstract_inverted_index.via | 86 |
| abstract_inverted_index.CPS, | 102 |
| abstract_inverted_index.CPSs | 69 |
| abstract_inverted_index.ISAR | 42, 119, 128 |
| abstract_inverted_index.This | 59 |
| abstract_inverted_index.data | 136 |
| abstract_inverted_index.fast | 91 |
| abstract_inverted_index.have | 15 |
| abstract_inverted_index.rate | 34, 39 |
| abstract_inverted_index.with | 9, 95 |
| abstract_inverted_index.Then, | 116 |
| abstract_inverted_index.after | 25 |
| abstract_inverted_index.based | 70 |
| abstract_inverted_index.chirp | 33, 38 |
| abstract_inverted_index.cubic | 21 |
| abstract_inverted_index.image | 43, 120 |
| abstract_inverted_index.local | 73 |
| abstract_inverted_index.paper | 60 |
| abstract_inverted_index.phase | 22 |
| abstract_inverted_index.radar | 4 |
| abstract_inverted_index.thus, | 51 |
| abstract_inverted_index.which | 78 |
| abstract_inverted_index.(CPSs) | 24 |
| abstract_inverted_index.(ISAR) | 5 |
| abstract_inverted_index.better | 109 |
| abstract_inverted_index.easily | 84 |
| abstract_inverted_index.echoes | 14 |
| abstract_inverted_index.model, | 31 |
| abstract_inverted_index.motion | 26 |
| abstract_inverted_index.shift; | 50 |
| abstract_inverted_index.simple | 80 |
| abstract_inverted_index.(LPAF), | 77 |
| abstract_inverted_index.Doppler | 48 |
| abstract_inverted_index.Fourier | 92 |
| abstract_inverted_index.achieve | 107 |
| abstract_inverted_index.azimuth | 13 |
| abstract_inverted_index.between | 111 |
| abstract_inverted_index.complex | 10, 88 |
| abstract_inverted_index.focuses | 61 |
| abstract_inverted_index.imaging | 6, 129 |
| abstract_inverted_index.inverse | 1 |
| abstract_inverted_index.modeled | 18 |
| abstract_inverted_index.motion, | 11 |
| abstract_inverted_index.quality | 44 |
| abstract_inverted_index.results | 132 |
| abstract_inverted_index.signals | 23 |
| abstract_inverted_index.targets | 8 |
| abstract_inverted_index.Compared | 94 |
| abstract_inverted_index.aperture | 3 |
| abstract_inverted_index.existing | 97 |
| abstract_inverted_index.function | 76 |
| abstract_inverted_index.obtained | 123 |
| abstract_inverted_index.proposed | 104, 126, 142 |
| abstract_inverted_index.algorithm | 56, 66, 100, 105 |
| abstract_inverted_index.ambiguity | 75 |
| abstract_inverted_index.effective | 53 |
| abstract_inverted_index.frequency | 49 |
| abstract_inverted_index.parameter | 54, 64, 98 |
| abstract_inverted_index.quadratic | 37 |
| abstract_inverted_index.required. | 58 |
| abstract_inverted_index.simulated | 135 |
| abstract_inverted_index.synthetic | 2 |
| abstract_inverted_index.LPAF-based | 127 |
| abstract_inverted_index.algorithm. | 130, 143 |
| abstract_inverted_index.compromise | 110 |
| abstract_inverted_index.estimation | 55, 65, 99 |
| abstract_inverted_index.polynomial | 74 |
| abstract_inverted_index.transform. | 93 |
| abstract_inverted_index.complexity. | 115 |
| abstract_inverted_index.demonstrate | 137 |
| abstract_inverted_index.deteriorate | 40 |
| abstract_inverted_index.implemented | 85 |
| abstract_inverted_index.performance | 112 |
| abstract_inverted_index.high-quality | 118 |
| abstract_inverted_index.compensation. | 27 |
| abstract_inverted_index.computational | 114 |
| abstract_inverted_index.effectiveness | 139 |
| abstract_inverted_index.multicomponent | 20, 68 |
| abstract_inverted_index.multiplication | 89 |
| cited_by_percentile_year.max | 97 |
| cited_by_percentile_year.min | 89 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 3 |
| citation_normalized_percentile.value | 0.96702485 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |