Investigating Labeler Bias in Face Annotation for Machine Learning Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.3233/faia240191
In a world increasingly reliant on artificial intelligence, it is more important than ever to consider the ethical implications of artificial intelligence. One key under-explored challenge is labeler bias — bias introduced by individuals who label datasets — which can create inherently biased datasets for training and subsequently lead to inaccurate or unfair decisions in healthcare, employment, education, and law enforcement. Hence, we conducted a study (N=98) to investigate and measure the existence of labeler bias using images of people from different ethnicities and sexes in a labeling task. Our results show that participants hold stereotypes that influence their decision-making process and that labeler demographics impact assigned labels. We also discuss how labeler bias influences datasets and, subsequently, the models trained on them. Overall, a high degree of transparency must be maintained throughout the entire artificial intelligence training process to identify and correct biases in the data as early as possible.
Related Topics
- Type
- book-chapter
- Language
- en
- Landing Page
- https://doi.org/10.3233/faia240191
- https://ebooks.iospress.nl/pdf/doi/10.3233/FAIA240191
- OA Status
- hybrid
- Cited By
- 5
- References
- 43
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4399391150
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4399391150Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.3233/faia240191Digital Object Identifier
- Title
-
Investigating Labeler Bias in Face Annotation for Machine LearningWork title
- Type
-
book-chapterOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-06-05Full publication date if available
- Authors
-
Luke Haliburton, Sinksar Ghebremedhin, Robin Welsch, Albrecht Schmidt, Sven MayerList of authors in order
- Landing page
-
https://doi.org/10.3233/faia240191Publisher landing page
- PDF URL
-
https://ebooks.iospress.nl/pdf/doi/10.3233/FAIA240191Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
hybridOpen access status per OpenAlex
- OA URL
-
https://ebooks.iospress.nl/pdf/doi/10.3233/FAIA240191Direct OA link when available
- Concepts
-
Annotation, Face (sociological concept), Computer science, Artificial intelligence, Philosophy, LinguisticsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
5Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 3, 2024: 2Per-year citation counts (last 5 years)
- References (count)
-
43Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4399391150 |
|---|---|
| doi | https://doi.org/10.3233/faia240191 |
| ids.doi | https://doi.org/10.3233/faia240191 |
| ids.openalex | https://openalex.org/W4399391150 |
| fwci | 4.51178873 |
| type | book-chapter |
| title | Investigating Labeler Bias in Face Annotation for Machine Learning |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11448 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9962000250816345 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1707 |
| topics[0].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[0].display_name | Face recognition and analysis |
| topics[1].id | https://openalex.org/T11605 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9599999785423279 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1707 |
| topics[1].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[1].display_name | Visual Attention and Saliency Detection |
| topics[2].id | https://openalex.org/T10627 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.930899977684021 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1707 |
| topics[2].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[2].display_name | Advanced Image and Video Retrieval Techniques |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C2776321320 |
| concepts[0].level | 2 |
| concepts[0].score | 0.57518070936203 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q857525 |
| concepts[0].display_name | Annotation |
| concepts[1].id | https://openalex.org/C2779304628 |
| concepts[1].level | 2 |
| concepts[1].score | 0.5313299894332886 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q3503480 |
| concepts[1].display_name | Face (sociological concept) |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.5212177038192749 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| concepts[3].id | https://openalex.org/C154945302 |
| concepts[3].level | 1 |
| concepts[3].score | 0.5115102529525757 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[3].display_name | Artificial intelligence |
| concepts[4].id | https://openalex.org/C138885662 |
| concepts[4].level | 0 |
| concepts[4].score | 0.16085872054100037 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q5891 |
| concepts[4].display_name | Philosophy |
| concepts[5].id | https://openalex.org/C41895202 |
| concepts[5].level | 1 |
| concepts[5].score | 0.09573432803153992 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q8162 |
| concepts[5].display_name | Linguistics |
| keywords[0].id | https://openalex.org/keywords/annotation |
| keywords[0].score | 0.57518070936203 |
| keywords[0].display_name | Annotation |
| keywords[1].id | https://openalex.org/keywords/face |
| keywords[1].score | 0.5313299894332886 |
| keywords[1].display_name | Face (sociological concept) |
| keywords[2].id | https://openalex.org/keywords/computer-science |
| keywords[2].score | 0.5212177038192749 |
| keywords[2].display_name | Computer science |
| keywords[3].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[3].score | 0.5115102529525757 |
| keywords[3].display_name | Artificial intelligence |
| keywords[4].id | https://openalex.org/keywords/philosophy |
| keywords[4].score | 0.16085872054100037 |
| keywords[4].display_name | Philosophy |
| keywords[5].id | https://openalex.org/keywords/linguistics |
| keywords[5].score | 0.09573432803153992 |
| keywords[5].display_name | Linguistics |
| language | en |
| locations[0].id | doi:10.3233/faia240191 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210201731 |
| locations[0].source.issn | 0922-6389, 1879-8314 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | 0922-6389 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Frontiers in artificial intelligence and applications |
| locations[0].source.host_organization | |
| locations[0].source.host_organization_name | |
| locations[0].license | cc-by-nc |
| locations[0].pdf_url | https://ebooks.iospress.nl/pdf/doi/10.3233/FAIA240191 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | book-chapter |
| locations[0].license_id | https://openalex.org/licenses/cc-by-nc |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Frontiers in Artificial Intelligence and Applications |
| locations[0].landing_page_url | https://doi.org/10.3233/faia240191 |
| locations[1].id | pmh:oai:aaltodoc.aalto.fi:123456789/130316 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306401662 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | Aaltodoc (Aalto University) |
| locations[1].source.host_organization | https://openalex.org/I9927081 |
| locations[1].source.host_organization_name | Aalto University |
| locations[1].source.host_organization_lineage | https://openalex.org/I9927081 |
| locations[1].license | other-oa |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | publishedVersion |
| locations[1].license_id | https://openalex.org/licenses/other-oa |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://aaltodoc.aalto.fi/handle/123456789/130316 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5005706666 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-5654-2453 |
| authorships[0].author.display_name | Luke Haliburton |
| authorships[0].countries | DE |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I3018771216, https://openalex.org/I8204097 |
| authorships[0].affiliations[0].raw_affiliation_string | LMU Munich, Germany |
| authorships[0].affiliations[1].institution_ids | https://openalex.org/I4403386549 |
| authorships[0].affiliations[1].raw_affiliation_string | Munich Center for Machine Learning (MCML), Germany |
| authorships[0].institutions[0].id | https://openalex.org/I4403386549 |
| authorships[0].institutions[0].ror | https://ror.org/02nfy3535 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I4403386549, https://openalex.org/I62916508, https://openalex.org/I8204097 |
| authorships[0].institutions[0].country_code | |
| authorships[0].institutions[0].display_name | Munich Center for Machine Learning |
| authorships[0].institutions[1].id | https://openalex.org/I3018771216 |
| authorships[0].institutions[1].ror | https://ror.org/02jet3w32 |
| authorships[0].institutions[1].type | healthcare |
| authorships[0].institutions[1].lineage | https://openalex.org/I3018771216, https://openalex.org/I8204097 |
| authorships[0].institutions[1].country_code | DE |
| authorships[0].institutions[1].display_name | LMU Klinikum |
| authorships[0].institutions[2].id | https://openalex.org/I8204097 |
| authorships[0].institutions[2].ror | https://ror.org/05591te55 |
| authorships[0].institutions[2].type | education |
| authorships[0].institutions[2].lineage | https://openalex.org/I8204097 |
| authorships[0].institutions[2].country_code | DE |
| authorships[0].institutions[2].display_name | Ludwig-Maximilians-Universität München |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Luke Haliburton |
| authorships[0].is_corresponding | True |
| authorships[0].raw_affiliation_strings | LMU Munich, Germany, Munich Center for Machine Learning (MCML), Germany |
| authorships[1].author.id | https://openalex.org/A5038851608 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-2874-2909 |
| authorships[1].author.display_name | Sinksar Ghebremedhin |
| authorships[1].countries | DE |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I3018771216, https://openalex.org/I8204097 |
| authorships[1].affiliations[0].raw_affiliation_string | LMU Munich, Germany |
| authorships[1].institutions[0].id | https://openalex.org/I3018771216 |
| authorships[1].institutions[0].ror | https://ror.org/02jet3w32 |
| authorships[1].institutions[0].type | healthcare |
| authorships[1].institutions[0].lineage | https://openalex.org/I3018771216, https://openalex.org/I8204097 |
| authorships[1].institutions[0].country_code | DE |
| authorships[1].institutions[0].display_name | LMU Klinikum |
| authorships[1].institutions[1].id | https://openalex.org/I8204097 |
| authorships[1].institutions[1].ror | https://ror.org/05591te55 |
| authorships[1].institutions[1].type | education |
| authorships[1].institutions[1].lineage | https://openalex.org/I8204097 |
| authorships[1].institutions[1].country_code | DE |
| authorships[1].institutions[1].display_name | Ludwig-Maximilians-Universität München |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Sinksar Ghebremedhin |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | LMU Munich, Germany |
| authorships[2].author.id | https://openalex.org/A5010117911 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-7255-7890 |
| authorships[2].author.display_name | Robin Welsch |
| authorships[2].countries | FI |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I9927081 |
| authorships[2].affiliations[0].raw_affiliation_string | Aalto University, Finland |
| authorships[2].institutions[0].id | https://openalex.org/I9927081 |
| authorships[2].institutions[0].ror | https://ror.org/020hwjq30 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I9927081 |
| authorships[2].institutions[0].country_code | FI |
| authorships[2].institutions[0].display_name | Aalto University |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Robin Welsch |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Aalto University, Finland |
| authorships[3].author.id | https://openalex.org/A5062196262 |
| authorships[3].author.orcid | https://orcid.org/0000-0003-3890-1990 |
| authorships[3].author.display_name | Albrecht Schmidt |
| authorships[3].countries | DE |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I3018771216, https://openalex.org/I8204097 |
| authorships[3].affiliations[0].raw_affiliation_string | LMU Munich, Germany |
| authorships[3].institutions[0].id | https://openalex.org/I3018771216 |
| authorships[3].institutions[0].ror | https://ror.org/02jet3w32 |
| authorships[3].institutions[0].type | healthcare |
| authorships[3].institutions[0].lineage | https://openalex.org/I3018771216, https://openalex.org/I8204097 |
| authorships[3].institutions[0].country_code | DE |
| authorships[3].institutions[0].display_name | LMU Klinikum |
| authorships[3].institutions[1].id | https://openalex.org/I8204097 |
| authorships[3].institutions[1].ror | https://ror.org/05591te55 |
| authorships[3].institutions[1].type | education |
| authorships[3].institutions[1].lineage | https://openalex.org/I8204097 |
| authorships[3].institutions[1].country_code | DE |
| authorships[3].institutions[1].display_name | Ludwig-Maximilians-Universität München |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Albrecht Schmidt |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | LMU Munich, Germany |
| authorships[4].author.id | https://openalex.org/A5040353906 |
| authorships[4].author.orcid | https://orcid.org/0000-0001-5462-8782 |
| authorships[4].author.display_name | Sven Mayer |
| authorships[4].countries | DE |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I3018771216, https://openalex.org/I8204097 |
| authorships[4].affiliations[0].raw_affiliation_string | LMU Munich, Germany |
| authorships[4].institutions[0].id | https://openalex.org/I3018771216 |
| authorships[4].institutions[0].ror | https://ror.org/02jet3w32 |
| authorships[4].institutions[0].type | healthcare |
| authorships[4].institutions[0].lineage | https://openalex.org/I3018771216, https://openalex.org/I8204097 |
| authorships[4].institutions[0].country_code | DE |
| authorships[4].institutions[0].display_name | LMU Klinikum |
| authorships[4].institutions[1].id | https://openalex.org/I8204097 |
| authorships[4].institutions[1].ror | https://ror.org/05591te55 |
| authorships[4].institutions[1].type | education |
| authorships[4].institutions[1].lineage | https://openalex.org/I8204097 |
| authorships[4].institutions[1].country_code | DE |
| authorships[4].institutions[1].display_name | Ludwig-Maximilians-Universität München |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Sven Mayer |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | LMU Munich, Germany |
| has_content.pdf | True |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://ebooks.iospress.nl/pdf/doi/10.3233/FAIA240191 |
| open_access.oa_status | hybrid |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Investigating Labeler Bias in Face Annotation for Machine Learning |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T11448 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9962000250816345 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1707 |
| primary_topic.subfield.display_name | Computer Vision and Pattern Recognition |
| primary_topic.display_name | Face recognition and analysis |
| related_works | https://openalex.org/W4391375266, https://openalex.org/W2748952813, https://openalex.org/W2361861616, https://openalex.org/W2263699433, https://openalex.org/W2377979023, https://openalex.org/W2218034408, https://openalex.org/W2392921965, https://openalex.org/W2358755282, https://openalex.org/W2625833328, https://openalex.org/W1533177136 |
| cited_by_count | 5 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 3 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 2 |
| locations_count | 2 |
| best_oa_location.id | doi:10.3233/faia240191 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210201731 |
| best_oa_location.source.issn | 0922-6389, 1879-8314 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | 0922-6389 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Frontiers in artificial intelligence and applications |
| best_oa_location.source.host_organization | |
| best_oa_location.source.host_organization_name | |
| best_oa_location.license | cc-by-nc |
| best_oa_location.pdf_url | https://ebooks.iospress.nl/pdf/doi/10.3233/FAIA240191 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | book-chapter |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by-nc |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Frontiers in Artificial Intelligence and Applications |
| best_oa_location.landing_page_url | https://doi.org/10.3233/faia240191 |
| primary_location.id | doi:10.3233/faia240191 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210201731 |
| primary_location.source.issn | 0922-6389, 1879-8314 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | 0922-6389 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Frontiers in artificial intelligence and applications |
| primary_location.source.host_organization | |
| primary_location.source.host_organization_name | |
| primary_location.license | cc-by-nc |
| primary_location.pdf_url | https://ebooks.iospress.nl/pdf/doi/10.3233/FAIA240191 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | book-chapter |
| primary_location.license_id | https://openalex.org/licenses/cc-by-nc |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Frontiers in Artificial Intelligence and Applications |
| primary_location.landing_page_url | https://doi.org/10.3233/faia240191 |
| publication_date | 2024-06-05 |
| publication_year | 2024 |
| referenced_works | https://openalex.org/W1963947469, https://openalex.org/W3029264758, https://openalex.org/W2783668259, https://openalex.org/W3160665248, https://openalex.org/W1577841485, https://openalex.org/W2941486823, https://openalex.org/W2032484416, https://openalex.org/W1544543982, https://openalex.org/W2475282416, https://openalex.org/W2594940643, https://openalex.org/W4225378656, https://openalex.org/W3044248538, https://openalex.org/W4281568480, https://openalex.org/W4309618884, https://openalex.org/W1973485875, https://openalex.org/W2783946743, https://openalex.org/W2955870353, https://openalex.org/W3133702157, https://openalex.org/W3120485916, https://openalex.org/W2251311344, https://openalex.org/W2941985495, https://openalex.org/W4287125557, https://openalex.org/W2970850777, https://openalex.org/W3093541323, https://openalex.org/W3129794348, https://openalex.org/W2150690631, https://openalex.org/W4289328212, https://openalex.org/W2062526841, https://openalex.org/W1507645993, https://openalex.org/W4288258593, https://openalex.org/W2941070884, https://openalex.org/W4307182327, https://openalex.org/W4220699706, https://openalex.org/W2109453861, https://openalex.org/W2791423782, https://openalex.org/W4288327876, https://openalex.org/W4211022696, https://openalex.org/W2407816088, https://openalex.org/W2013607934, https://openalex.org/W3003385079, https://openalex.org/W3092124192, https://openalex.org/W4283168736, https://openalex.org/W3148183269 |
| referenced_works_count | 43 |
| abstract_inverted_index.a | 1, 64, 86, 124 |
| abstract_inverted_index.In | 0 |
| abstract_inverted_index.We | 108 |
| abstract_inverted_index.as | 147, 149 |
| abstract_inverted_index.be | 130 |
| abstract_inverted_index.by | 32 |
| abstract_inverted_index.in | 54, 85, 144 |
| abstract_inverted_index.is | 9, 26 |
| abstract_inverted_index.it | 8 |
| abstract_inverted_index.of | 19, 73, 78, 127 |
| abstract_inverted_index.on | 5, 121 |
| abstract_inverted_index.or | 51 |
| abstract_inverted_index.to | 14, 49, 67, 139 |
| abstract_inverted_index.we | 62 |
| abstract_inverted_index.One | 22 |
| abstract_inverted_index.Our | 89 |
| abstract_inverted_index.and | 46, 58, 69, 83, 101, 141 |
| abstract_inverted_index.can | 39 |
| abstract_inverted_index.for | 44 |
| abstract_inverted_index.how | 111 |
| abstract_inverted_index.key | 23 |
| abstract_inverted_index.law | 59 |
| abstract_inverted_index.the | 16, 71, 118, 133, 145 |
| abstract_inverted_index.who | 34 |
| abstract_inverted_index.— | 29, 37 |
| abstract_inverted_index.also | 109 |
| abstract_inverted_index.and, | 116 |
| abstract_inverted_index.bias | 28, 30, 75, 113 |
| abstract_inverted_index.data | 146 |
| abstract_inverted_index.ever | 13 |
| abstract_inverted_index.from | 80 |
| abstract_inverted_index.high | 125 |
| abstract_inverted_index.hold | 94 |
| abstract_inverted_index.lead | 48 |
| abstract_inverted_index.more | 10 |
| abstract_inverted_index.must | 129 |
| abstract_inverted_index.show | 91 |
| abstract_inverted_index.than | 12 |
| abstract_inverted_index.that | 92, 96, 102 |
| abstract_inverted_index.early | 148 |
| abstract_inverted_index.label | 35 |
| abstract_inverted_index.sexes | 84 |
| abstract_inverted_index.study | 65 |
| abstract_inverted_index.task. | 88 |
| abstract_inverted_index.their | 98 |
| abstract_inverted_index.them. | 122 |
| abstract_inverted_index.using | 76 |
| abstract_inverted_index.which | 38 |
| abstract_inverted_index.world | 2 |
| abstract_inverted_index.(N=98) | 66 |
| abstract_inverted_index.Hence, | 61 |
| abstract_inverted_index.biased | 42 |
| abstract_inverted_index.biases | 143 |
| abstract_inverted_index.create | 40 |
| abstract_inverted_index.degree | 126 |
| abstract_inverted_index.entire | 134 |
| abstract_inverted_index.images | 77 |
| abstract_inverted_index.impact | 105 |
| abstract_inverted_index.models | 119 |
| abstract_inverted_index.people | 79 |
| abstract_inverted_index.unfair | 52 |
| abstract_inverted_index.correct | 142 |
| abstract_inverted_index.discuss | 110 |
| abstract_inverted_index.ethical | 17 |
| abstract_inverted_index.labeler | 27, 74, 103, 112 |
| abstract_inverted_index.labels. | 107 |
| abstract_inverted_index.measure | 70 |
| abstract_inverted_index.process | 100, 138 |
| abstract_inverted_index.reliant | 4 |
| abstract_inverted_index.results | 90 |
| abstract_inverted_index.trained | 120 |
| abstract_inverted_index.Overall, | 123 |
| abstract_inverted_index.assigned | 106 |
| abstract_inverted_index.consider | 15 |
| abstract_inverted_index.datasets | 36, 43, 115 |
| abstract_inverted_index.identify | 140 |
| abstract_inverted_index.labeling | 87 |
| abstract_inverted_index.training | 45, 137 |
| abstract_inverted_index.challenge | 25 |
| abstract_inverted_index.conducted | 63 |
| abstract_inverted_index.decisions | 53 |
| abstract_inverted_index.different | 81 |
| abstract_inverted_index.existence | 72 |
| abstract_inverted_index.important | 11 |
| abstract_inverted_index.influence | 97 |
| abstract_inverted_index.possible. | 150 |
| abstract_inverted_index.artificial | 6, 20, 135 |
| abstract_inverted_index.education, | 57 |
| abstract_inverted_index.inaccurate | 50 |
| abstract_inverted_index.influences | 114 |
| abstract_inverted_index.inherently | 41 |
| abstract_inverted_index.introduced | 31 |
| abstract_inverted_index.maintained | 131 |
| abstract_inverted_index.throughout | 132 |
| abstract_inverted_index.employment, | 56 |
| abstract_inverted_index.ethnicities | 82 |
| abstract_inverted_index.healthcare, | 55 |
| abstract_inverted_index.individuals | 33 |
| abstract_inverted_index.investigate | 68 |
| abstract_inverted_index.stereotypes | 95 |
| abstract_inverted_index.demographics | 104 |
| abstract_inverted_index.enforcement. | 60 |
| abstract_inverted_index.implications | 18 |
| abstract_inverted_index.increasingly | 3 |
| abstract_inverted_index.intelligence | 136 |
| abstract_inverted_index.participants | 93 |
| abstract_inverted_index.subsequently | 47 |
| abstract_inverted_index.transparency | 128 |
| abstract_inverted_index.intelligence, | 7 |
| abstract_inverted_index.intelligence. | 21 |
| abstract_inverted_index.subsequently, | 117 |
| abstract_inverted_index.under-explored | 24 |
| abstract_inverted_index.decision-making | 99 |
| cited_by_percentile_year.max | 97 |
| cited_by_percentile_year.min | 94 |
| corresponding_author_ids | https://openalex.org/A5005706666 |
| countries_distinct_count | 2 |
| institutions_distinct_count | 5 |
| corresponding_institution_ids | https://openalex.org/I3018771216, https://openalex.org/I4403386549, https://openalex.org/I8204097 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/16 |
| sustainable_development_goals[0].score | 0.6000000238418579 |
| sustainable_development_goals[0].display_name | Peace, Justice and strong institutions |
| citation_normalized_percentile.value | 0.94039309 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |