Investigating text power in predicting semantic similarity Article Swipe
YOU?
·
· 2019
· Open Access
·
This article presents an empirical evaluation to investigate the distributional semantic power of abstract, body and full-text, as different text levels, in predicting the semantic similarity using a collection of open access articles from PubMed. The semantic similarity is measured based on two criteria namely, linear MeSH terms intersection and hierarchical MeSH terms distance. As such, a random sample of 200 queries and 20000 documents are selected from a test collection built on CITREC open source code. Sim Pack Java Library is used to calculate the textual and semantic similarities. The nDCG value corresponding to two of the semantic similarity criteria is calculated at three precision points. Finally, the nDCG values are compared by using the Friedman test to determine the power of each text level in predicting the semantic similarity. The results showed the effectiveness of the text in representing the semantic similarity in such a way that texts with maximum textual similarity are also shown to be 77% and 67% semantically similar in terms of linear and hierarchical criteria, respectively. Furthermore, the text length is found to be more effective in representing the hierarchical semantic compared to the linear one. Based on the findings, it is concluded that when the subjects are homogenous in the tree of knowledge, abstracts provide effective semantic capabilities, while in heterogeneous milieus, full-texts processing or knowledge bases is needed to acquire IR effectiveness.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doaj.org/article/e5fc4231b48e46238c4c60ad0edef40f
- OA Status
- green
- Cited By
- 2
- References
- 14
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W2910117565
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W2910117565Canonical identifier for this work in OpenAlex
- Title
-
Investigating text power in predicting semantic similarityWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2019Year of publication
- Publication date
-
2019-01-01Full publication date if available
- Authors
-
Zahra Yousefi, Hajar Sotudeh, Mahdieh Mirzabeigi, Seyed Mostafa Fakhrahmad, Alireza Nikseresht, Mehdi MohammadiList of authors in order
- Landing page
-
https://doaj.org/article/e5fc4231b48e46238c4c60ad0edef40fPublisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://doaj.org/article/e5fc4231b48e46238c4c60ad0edef40fDirect OA link when available
- Concepts
-
Semantic similarity, Computer science, Similarity (geometry), Information retrieval, Natural language processing, Artificial intelligence, Image (mathematics)Top concepts (fields/topics) attached by OpenAlex
- Cited by
-
2Total citation count in OpenAlex
- Citations by year (recent)
-
2021: 1, 2020: 1Per-year citation counts (last 5 years)
- References (count)
-
14Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W2910117565 |
|---|---|
| doi | |
| ids.mag | 2910117565 |
| ids.openalex | https://openalex.org/W2910117565 |
| fwci | 0.30723549 |
| type | article |
| title | Investigating text power in predicting semantic similarity |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10028 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9995999932289124 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Topic Modeling |
| topics[1].id | https://openalex.org/T13083 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9993000030517578 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | Advanced Text Analysis Techniques |
| topics[2].id | https://openalex.org/T11710 |
| topics[2].field.id | https://openalex.org/fields/13 |
| topics[2].field.display_name | Biochemistry, Genetics and Molecular Biology |
| topics[2].score | 0.9908999800682068 |
| topics[2].domain.id | https://openalex.org/domains/1 |
| topics[2].domain.display_name | Life Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1312 |
| topics[2].subfield.display_name | Molecular Biology |
| topics[2].display_name | Biomedical Text Mining and Ontologies |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C130318100 |
| concepts[0].level | 2 |
| concepts[0].score | 0.8137009143829346 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q2268914 |
| concepts[0].display_name | Semantic similarity |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.7791221737861633 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C103278499 |
| concepts[2].level | 3 |
| concepts[2].score | 0.6530179977416992 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q254465 |
| concepts[2].display_name | Similarity (geometry) |
| concepts[3].id | https://openalex.org/C23123220 |
| concepts[3].level | 1 |
| concepts[3].score | 0.5382864475250244 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q816826 |
| concepts[3].display_name | Information retrieval |
| concepts[4].id | https://openalex.org/C204321447 |
| concepts[4].level | 1 |
| concepts[4].score | 0.4143866300582886 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q30642 |
| concepts[4].display_name | Natural language processing |
| concepts[5].id | https://openalex.org/C154945302 |
| concepts[5].level | 1 |
| concepts[5].score | 0.3889937996864319 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[5].display_name | Artificial intelligence |
| concepts[6].id | https://openalex.org/C115961682 |
| concepts[6].level | 2 |
| concepts[6].score | 0.14445725083351135 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q860623 |
| concepts[6].display_name | Image (mathematics) |
| keywords[0].id | https://openalex.org/keywords/semantic-similarity |
| keywords[0].score | 0.8137009143829346 |
| keywords[0].display_name | Semantic similarity |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.7791221737861633 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/similarity |
| keywords[2].score | 0.6530179977416992 |
| keywords[2].display_name | Similarity (geometry) |
| keywords[3].id | https://openalex.org/keywords/information-retrieval |
| keywords[3].score | 0.5382864475250244 |
| keywords[3].display_name | Information retrieval |
| keywords[4].id | https://openalex.org/keywords/natural-language-processing |
| keywords[4].score | 0.4143866300582886 |
| keywords[4].display_name | Natural language processing |
| keywords[5].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[5].score | 0.3889937996864319 |
| keywords[5].display_name | Artificial intelligence |
| keywords[6].id | https://openalex.org/keywords/image |
| keywords[6].score | 0.14445725083351135 |
| keywords[6].display_name | Image (mathematics) |
| language | en |
| locations[0].id | pmh:oai:doaj.org/article:e5fc4231b48e46238c4c60ad0edef40f |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306401280 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[0].source.host_organization | |
| locations[0].source.host_organization_name | |
| locations[0].source.host_organization_lineage | |
| locations[0].license | cc-by-sa |
| locations[0].pdf_url | |
| locations[0].version | submittedVersion |
| locations[0].raw_type | article |
| locations[0].license_id | https://openalex.org/licenses/cc-by-sa |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | International Journal of Information Science and Management, Vol 17, Iss 1 (2019) |
| locations[0].landing_page_url | https://doaj.org/article/e5fc4231b48e46238c4c60ad0edef40f |
| indexed_in | doaj |
| authorships[0].author.id | https://openalex.org/A5067612630 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-6856-9621 |
| authorships[0].author.display_name | Zahra Yousefi |
| authorships[0].countries | IR |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I166459259 |
| authorships[0].affiliations[0].raw_affiliation_string | Department of Knowledge & Information Sciences#R##N#Faculty of Education & Psychology#R##N#Eram Campus, #R##N#Shiraz University, #R##N#Shiraz, Iran |
| authorships[0].institutions[0].id | https://openalex.org/I166459259 |
| authorships[0].institutions[0].ror | https://ror.org/028qtbk54 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I166459259 |
| authorships[0].institutions[0].country_code | IR |
| authorships[0].institutions[0].display_name | Shiraz University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Zahra Yousefi |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Department of Knowledge & Information Sciences#R##N#Faculty of Education & Psychology#R##N#Eram Campus, #R##N#Shiraz University, #R##N#Shiraz, Iran |
| authorships[1].author.id | https://openalex.org/A5063528169 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-7949-7165 |
| authorships[1].author.display_name | Hajar Sotudeh |
| authorships[1].countries | IR |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I166459259 |
| authorships[1].affiliations[0].raw_affiliation_string | Department of Knowledge & Information Sciences#R##N#Faculty of Education & Psychology#R##N#Eram Campus, #R##N#Shiraz University, #R##N#Shiraz, Iran |
| authorships[1].institutions[0].id | https://openalex.org/I166459259 |
| authorships[1].institutions[0].ror | https://ror.org/028qtbk54 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I166459259 |
| authorships[1].institutions[0].country_code | IR |
| authorships[1].institutions[0].display_name | Shiraz University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Hajar Sotudeh |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Department of Knowledge & Information Sciences#R##N#Faculty of Education & Psychology#R##N#Eram Campus, #R##N#Shiraz University, #R##N#Shiraz, Iran |
| authorships[2].author.id | https://openalex.org/A5085650524 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-3256-3153 |
| authorships[2].author.display_name | Mahdieh Mirzabeigi |
| authorships[2].countries | IR |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I166459259 |
| authorships[2].affiliations[0].raw_affiliation_string | Department of Knowledge & Information Sciences#R##N#Faculty of Education & Psychology#R##N#Eram Campus, #R##N#Shiraz University, #R##N#Shiraz, Iran |
| authorships[2].institutions[0].id | https://openalex.org/I166459259 |
| authorships[2].institutions[0].ror | https://ror.org/028qtbk54 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I166459259 |
| authorships[2].institutions[0].country_code | IR |
| authorships[2].institutions[0].display_name | Shiraz University |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Mahdieh Mirzabeigi |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Department of Knowledge & Information Sciences#R##N#Faculty of Education & Psychology#R##N#Eram Campus, #R##N#Shiraz University, #R##N#Shiraz, Iran |
| authorships[3].author.id | https://openalex.org/A5034136057 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-9517-0541 |
| authorships[3].author.display_name | Seyed Mostafa Fakhrahmad |
| authorships[3].countries | IR |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I166459259 |
| authorships[3].affiliations[0].raw_affiliation_string | Department of Computer Science and Engineering , School of Electrical and Computer Engineering, Shiraz University , Shiraz, Iran |
| authorships[3].institutions[0].id | https://openalex.org/I166459259 |
| authorships[3].institutions[0].ror | https://ror.org/028qtbk54 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I166459259 |
| authorships[3].institutions[0].country_code | IR |
| authorships[3].institutions[0].display_name | Shiraz University |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Seyed Mostafa Fakhrahmad |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Department of Computer Science and Engineering , School of Electrical and Computer Engineering, Shiraz University , Shiraz, Iran |
| authorships[4].author.id | https://openalex.org/A5080741829 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-4516-0409 |
| authorships[4].author.display_name | Alireza Nikseresht |
| authorships[4].countries | IR |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I166459259 |
| authorships[4].affiliations[0].raw_affiliation_string | Department of Knowledge & Information Sciences#R##N#Faculty of Education & Psychology#R##N#Eram Campus, #R##N#Shiraz University, #R##N#Shiraz, Iran |
| authorships[4].institutions[0].id | https://openalex.org/I166459259 |
| authorships[4].institutions[0].ror | https://ror.org/028qtbk54 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I166459259 |
| authorships[4].institutions[0].country_code | IR |
| authorships[4].institutions[0].display_name | Shiraz University |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Alireza Nikseresht |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Department of Knowledge & Information Sciences#R##N#Faculty of Education & Psychology#R##N#Eram Campus, #R##N#Shiraz University, #R##N#Shiraz, Iran |
| authorships[5].author.id | https://openalex.org/A5015767232 |
| authorships[5].author.orcid | https://orcid.org/0000-0001-9947-3470 |
| authorships[5].author.display_name | Mehdi Mohammadi |
| authorships[5].countries | IR |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I166459259 |
| authorships[5].affiliations[0].raw_affiliation_string | Department of Educational Management and Planning #R##N#Faculty of Education & Psychology#R##N#Eram Campus, #R##N#Shiraz University, #R##N#Shiraz, Iran |
| authorships[5].institutions[0].id | https://openalex.org/I166459259 |
| authorships[5].institutions[0].ror | https://ror.org/028qtbk54 |
| authorships[5].institutions[0].type | education |
| authorships[5].institutions[0].lineage | https://openalex.org/I166459259 |
| authorships[5].institutions[0].country_code | IR |
| authorships[5].institutions[0].display_name | Shiraz University |
| authorships[5].author_position | last |
| authorships[5].raw_author_name | Mehdi Mohammadi |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | Department of Educational Management and Planning #R##N#Faculty of Education & Psychology#R##N#Eram Campus, #R##N#Shiraz University, #R##N#Shiraz, Iran |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doaj.org/article/e5fc4231b48e46238c4c60ad0edef40f |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Investigating text power in predicting semantic similarity |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T04:12:42.849631 |
| primary_topic.id | https://openalex.org/T10028 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9995999932289124 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Topic Modeling |
| related_works | https://openalex.org/W2114797768, https://openalex.org/W4376653378, https://openalex.org/W2380654781, https://openalex.org/W3204019825, https://openalex.org/W2181757899, https://openalex.org/W2176214140, https://openalex.org/W2516873349, https://openalex.org/W2898077673, https://openalex.org/W4385239468, https://openalex.org/W4200476258 |
| cited_by_count | 2 |
| counts_by_year[0].year | 2021 |
| counts_by_year[0].cited_by_count | 1 |
| counts_by_year[1].year | 2020 |
| counts_by_year[1].cited_by_count | 1 |
| locations_count | 1 |
| best_oa_location.id | pmh:oai:doaj.org/article:e5fc4231b48e46238c4c60ad0edef40f |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306401280 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| best_oa_location.source.host_organization | |
| best_oa_location.source.host_organization_name | |
| best_oa_location.source.host_organization_lineage | |
| best_oa_location.license | cc-by-sa |
| best_oa_location.pdf_url | |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by-sa |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | International Journal of Information Science and Management, Vol 17, Iss 1 (2019) |
| best_oa_location.landing_page_url | https://doaj.org/article/e5fc4231b48e46238c4c60ad0edef40f |
| primary_location.id | pmh:oai:doaj.org/article:e5fc4231b48e46238c4c60ad0edef40f |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306401280 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| primary_location.source.host_organization | |
| primary_location.source.host_organization_name | |
| primary_location.source.host_organization_lineage | |
| primary_location.license | cc-by-sa |
| primary_location.pdf_url | |
| primary_location.version | submittedVersion |
| primary_location.raw_type | article |
| primary_location.license_id | https://openalex.org/licenses/cc-by-sa |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | International Journal of Information Science and Management, Vol 17, Iss 1 (2019) |
| primary_location.landing_page_url | https://doaj.org/article/e5fc4231b48e46238c4c60ad0edef40f |
| publication_date | 2019-01-01 |
| publication_year | 2019 |
| referenced_works | https://openalex.org/W2168022112, https://openalex.org/W1633328346, https://openalex.org/W2100845478, https://openalex.org/W2163090381, https://openalex.org/W2092544775, https://openalex.org/W2018826373, https://openalex.org/W2605443619, https://openalex.org/W2099938389, https://openalex.org/W3104846106, https://openalex.org/W2026530352, https://openalex.org/W2064523138, https://openalex.org/W1536836933, https://openalex.org/W2136470659, https://openalex.org/W2606900069 |
| referenced_works_count | 14 |
| abstract_inverted_index.a | 27, 56, 68, 146 |
| abstract_inverted_index.As | 54 |
| abstract_inverted_index.IR | 228 |
| abstract_inverted_index.an | 3 |
| abstract_inverted_index.as | 17 |
| abstract_inverted_index.at | 103 |
| abstract_inverted_index.be | 158, 179 |
| abstract_inverted_index.by | 113 |
| abstract_inverted_index.in | 21, 126, 139, 144, 164, 182, 205, 216 |
| abstract_inverted_index.is | 38, 81, 101, 176, 197, 224 |
| abstract_inverted_index.it | 196 |
| abstract_inverted_index.of | 12, 29, 59, 96, 122, 136, 166, 208 |
| abstract_inverted_index.on | 41, 72, 193 |
| abstract_inverted_index.or | 221 |
| abstract_inverted_index.to | 6, 83, 94, 118, 157, 178, 188, 226 |
| abstract_inverted_index.200 | 60 |
| abstract_inverted_index.67% | 161 |
| abstract_inverted_index.77% | 159 |
| abstract_inverted_index.Sim | 77 |
| abstract_inverted_index.The | 35, 90, 131 |
| abstract_inverted_index.and | 15, 49, 62, 87, 160, 168 |
| abstract_inverted_index.are | 65, 111, 154, 203 |
| abstract_inverted_index.the | 8, 23, 85, 97, 108, 115, 120, 128, 134, 137, 141, 173, 184, 189, 194, 201, 206 |
| abstract_inverted_index.two | 42, 95 |
| abstract_inverted_index.way | 147 |
| abstract_inverted_index.Java | 79 |
| abstract_inverted_index.MeSH | 46, 51 |
| abstract_inverted_index.Pack | 78 |
| abstract_inverted_index.This | 0 |
| abstract_inverted_index.also | 155 |
| abstract_inverted_index.body | 14 |
| abstract_inverted_index.each | 123 |
| abstract_inverted_index.from | 33, 67 |
| abstract_inverted_index.more | 180 |
| abstract_inverted_index.nDCG | 91, 109 |
| abstract_inverted_index.one. | 191 |
| abstract_inverted_index.open | 30, 74 |
| abstract_inverted_index.such | 145 |
| abstract_inverted_index.test | 69, 117 |
| abstract_inverted_index.text | 19, 124, 138, 174 |
| abstract_inverted_index.that | 148, 199 |
| abstract_inverted_index.tree | 207 |
| abstract_inverted_index.used | 82 |
| abstract_inverted_index.when | 200 |
| abstract_inverted_index.with | 150 |
| abstract_inverted_index.20000 | 63 |
| abstract_inverted_index.Based | 192 |
| abstract_inverted_index.based | 40 |
| abstract_inverted_index.bases | 223 |
| abstract_inverted_index.built | 71 |
| abstract_inverted_index.code. | 76 |
| abstract_inverted_index.found | 177 |
| abstract_inverted_index.level | 125 |
| abstract_inverted_index.power | 11, 121 |
| abstract_inverted_index.shown | 156 |
| abstract_inverted_index.such, | 55 |
| abstract_inverted_index.terms | 47, 52, 165 |
| abstract_inverted_index.texts | 149 |
| abstract_inverted_index.three | 104 |
| abstract_inverted_index.using | 26, 114 |
| abstract_inverted_index.value | 92 |
| abstract_inverted_index.while | 215 |
| abstract_inverted_index.CITREC | 73 |
| abstract_inverted_index.access | 31 |
| abstract_inverted_index.length | 175 |
| abstract_inverted_index.linear | 45, 167, 190 |
| abstract_inverted_index.needed | 225 |
| abstract_inverted_index.random | 57 |
| abstract_inverted_index.sample | 58 |
| abstract_inverted_index.showed | 133 |
| abstract_inverted_index.source | 75 |
| abstract_inverted_index.values | 110 |
| abstract_inverted_index.Library | 80 |
| abstract_inverted_index.PubMed. | 34 |
| abstract_inverted_index.acquire | 227 |
| abstract_inverted_index.article | 1 |
| abstract_inverted_index.levels, | 20 |
| abstract_inverted_index.maximum | 151 |
| abstract_inverted_index.namely, | 44 |
| abstract_inverted_index.points. | 106 |
| abstract_inverted_index.provide | 211 |
| abstract_inverted_index.queries | 61 |
| abstract_inverted_index.results | 132 |
| abstract_inverted_index.similar | 163 |
| abstract_inverted_index.textual | 86, 152 |
| abstract_inverted_index.Finally, | 107 |
| abstract_inverted_index.Friedman | 116 |
| abstract_inverted_index.articles | 32 |
| abstract_inverted_index.compared | 112, 187 |
| abstract_inverted_index.criteria | 43, 100 |
| abstract_inverted_index.measured | 39 |
| abstract_inverted_index.milieus, | 218 |
| abstract_inverted_index.presents | 2 |
| abstract_inverted_index.selected | 66 |
| abstract_inverted_index.semantic | 10, 24, 36, 88, 98, 129, 142, 186, 213 |
| abstract_inverted_index.subjects | 202 |
| abstract_inverted_index.abstract, | 13 |
| abstract_inverted_index.abstracts | 210 |
| abstract_inverted_index.calculate | 84 |
| abstract_inverted_index.concluded | 198 |
| abstract_inverted_index.criteria, | 170 |
| abstract_inverted_index.determine | 119 |
| abstract_inverted_index.different | 18 |
| abstract_inverted_index.distance. | 53 |
| abstract_inverted_index.documents | 64 |
| abstract_inverted_index.effective | 181, 212 |
| abstract_inverted_index.empirical | 4 |
| abstract_inverted_index.findings, | 195 |
| abstract_inverted_index.knowledge | 222 |
| abstract_inverted_index.precision | 105 |
| abstract_inverted_index.calculated | 102 |
| abstract_inverted_index.collection | 28, 70 |
| abstract_inverted_index.evaluation | 5 |
| abstract_inverted_index.full-text, | 16 |
| abstract_inverted_index.full-texts | 219 |
| abstract_inverted_index.homogenous | 204 |
| abstract_inverted_index.knowledge, | 209 |
| abstract_inverted_index.predicting | 22, 127 |
| abstract_inverted_index.processing | 220 |
| abstract_inverted_index.similarity | 25, 37, 99, 143, 153 |
| abstract_inverted_index.investigate | 7 |
| abstract_inverted_index.similarity. | 130 |
| abstract_inverted_index.Furthermore, | 172 |
| abstract_inverted_index.hierarchical | 50, 169, 185 |
| abstract_inverted_index.intersection | 48 |
| abstract_inverted_index.representing | 140, 183 |
| abstract_inverted_index.semantically | 162 |
| abstract_inverted_index.capabilities, | 214 |
| abstract_inverted_index.corresponding | 93 |
| abstract_inverted_index.effectiveness | 135 |
| abstract_inverted_index.heterogeneous | 217 |
| abstract_inverted_index.respectively. | 171 |
| abstract_inverted_index.similarities. | 89 |
| abstract_inverted_index.distributional | 9 |
| abstract_inverted_index.effectiveness. | 229 |
| cited_by_percentile_year.max | 94 |
| cited_by_percentile_year.min | 89 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 6 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/4 |
| sustainable_development_goals[0].score | 0.6200000047683716 |
| sustainable_development_goals[0].display_name | Quality Education |
| citation_normalized_percentile.value | 0.63799959 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |