Investigating the Properties of Neural Network Representations in Reinforcement Learning Article Swipe
YOU?
·
· 2022
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2203.15955
In this paper we investigate the properties of representations learned by deep reinforcement learning systems. Much of the early work on representations for reinforcement learning focused on designing fixed-basis architectures to achieve properties thought to be desirable, such as orthogonality and sparsity. In contrast, the idea behind deep reinforcement learning methods is that the agent designer should not encode representational properties, but rather that the data stream should determine the properties of the representation -- good representations emerge under appropriate training schemes. In this paper we bring these two perspectives together, empirically investigating the properties of representations that support transfer in reinforcement learning. We introduce and measure six representational properties over more than 25 thousand agent-task settings. We consider Deep Q-learning agents with different auxiliary losses in a pixel-based navigation environment, with source and transfer tasks corresponding to different goal locations. We develop a method to better understand why some representations work better for transfer, through a systematic approach varying task similarity and measuring and correlating representation properties with transfer performance. We demonstrate the generality of the methodology by investigating representations learned by a Rainbow agent that successfully transfer across games modes in Atari 2600.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2203.15955
- https://arxiv.org/pdf/2203.15955
- OA Status
- green
- Cited By
- 1
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4224862964
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4224862964Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2203.15955Digital Object Identifier
- Title
-
Investigating the Properties of Neural Network Representations in Reinforcement LearningWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2022Year of publication
- Publication date
-
2022-03-30Full publication date if available
- Authors
-
Han Wang, Erfan Miahi, Martha White, Marlos C. Machado, Zaheer Abbas, Raksha Kumaraswamy, Vincent Liu, Adam WhiteList of authors in order
- Landing page
-
https://arxiv.org/abs/2203.15955Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2203.15955Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2203.15955Direct OA link when available
- Concepts
-
Reinforcement learning, Generality, Computer science, Orthogonality, Transfer of learning, Representation (politics), Task (project management), Artificial intelligence, ENCODE, Similarity (geometry), Contrast (vision), Reinforcement, Machine learning, Mathematics, Image (mathematics), Gene, Management, Chemistry, Law, Psychology, Biochemistry, Social psychology, Economics, Psychotherapist, Politics, Geometry, Political scienceTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
1Total citation count in OpenAlex
- Citations by year (recent)
-
2023: 1Per-year citation counts (last 5 years)
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4224862964 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2203.15955 |
| ids.doi | https://doi.org/10.48550/arxiv.2203.15955 |
| ids.openalex | https://openalex.org/W4224862964 |
| fwci | |
| type | preprint |
| title | Investigating the Properties of Neural Network Representations in Reinforcement Learning |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10462 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9972000122070312 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Reinforcement Learning in Robotics |
| topics[1].id | https://openalex.org/T12101 |
| topics[1].field.id | https://openalex.org/fields/18 |
| topics[1].field.display_name | Decision Sciences |
| topics[1].score | 0.9696000218391418 |
| topics[1].domain.id | https://openalex.org/domains/2 |
| topics[1].domain.display_name | Social Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1803 |
| topics[1].subfield.display_name | Management Science and Operations Research |
| topics[1].display_name | Advanced Bandit Algorithms Research |
| topics[2].id | https://openalex.org/T11689 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9434000253677368 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1702 |
| topics[2].subfield.display_name | Artificial Intelligence |
| topics[2].display_name | Adversarial Robustness in Machine Learning |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C97541855 |
| concepts[0].level | 2 |
| concepts[0].score | 0.8328930139541626 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q830687 |
| concepts[0].display_name | Reinforcement learning |
| concepts[1].id | https://openalex.org/C2780767217 |
| concepts[1].level | 2 |
| concepts[1].score | 0.769112229347229 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q5532421 |
| concepts[1].display_name | Generality |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.7238506078720093 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| concepts[3].id | https://openalex.org/C17137986 |
| concepts[3].level | 2 |
| concepts[3].score | 0.6590904593467712 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q215067 |
| concepts[3].display_name | Orthogonality |
| concepts[4].id | https://openalex.org/C150899416 |
| concepts[4].level | 2 |
| concepts[4].score | 0.6553243398666382 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q1820378 |
| concepts[4].display_name | Transfer of learning |
| concepts[5].id | https://openalex.org/C2776359362 |
| concepts[5].level | 3 |
| concepts[5].score | 0.6202625036239624 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q2145286 |
| concepts[5].display_name | Representation (politics) |
| concepts[6].id | https://openalex.org/C2780451532 |
| concepts[6].level | 2 |
| concepts[6].score | 0.586434006690979 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q759676 |
| concepts[6].display_name | Task (project management) |
| concepts[7].id | https://openalex.org/C154945302 |
| concepts[7].level | 1 |
| concepts[7].score | 0.5765403509140015 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[7].display_name | Artificial intelligence |
| concepts[8].id | https://openalex.org/C66746571 |
| concepts[8].level | 3 |
| concepts[8].score | 0.5038804411888123 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q1134833 |
| concepts[8].display_name | ENCODE |
| concepts[9].id | https://openalex.org/C103278499 |
| concepts[9].level | 3 |
| concepts[9].score | 0.5015625953674316 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q254465 |
| concepts[9].display_name | Similarity (geometry) |
| concepts[10].id | https://openalex.org/C2776502983 |
| concepts[10].level | 2 |
| concepts[10].score | 0.42499709129333496 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q690182 |
| concepts[10].display_name | Contrast (vision) |
| concepts[11].id | https://openalex.org/C67203356 |
| concepts[11].level | 2 |
| concepts[11].score | 0.421725332736969 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q1321905 |
| concepts[11].display_name | Reinforcement |
| concepts[12].id | https://openalex.org/C119857082 |
| concepts[12].level | 1 |
| concepts[12].score | 0.369299978017807 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[12].display_name | Machine learning |
| concepts[13].id | https://openalex.org/C33923547 |
| concepts[13].level | 0 |
| concepts[13].score | 0.08315965533256531 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[13].display_name | Mathematics |
| concepts[14].id | https://openalex.org/C115961682 |
| concepts[14].level | 2 |
| concepts[14].score | 0.06861615180969238 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q860623 |
| concepts[14].display_name | Image (mathematics) |
| concepts[15].id | https://openalex.org/C104317684 |
| concepts[15].level | 2 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q7187 |
| concepts[15].display_name | Gene |
| concepts[16].id | https://openalex.org/C187736073 |
| concepts[16].level | 1 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q2920921 |
| concepts[16].display_name | Management |
| concepts[17].id | https://openalex.org/C185592680 |
| concepts[17].level | 0 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q2329 |
| concepts[17].display_name | Chemistry |
| concepts[18].id | https://openalex.org/C199539241 |
| concepts[18].level | 1 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q7748 |
| concepts[18].display_name | Law |
| concepts[19].id | https://openalex.org/C15744967 |
| concepts[19].level | 0 |
| concepts[19].score | 0.0 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q9418 |
| concepts[19].display_name | Psychology |
| concepts[20].id | https://openalex.org/C55493867 |
| concepts[20].level | 1 |
| concepts[20].score | 0.0 |
| concepts[20].wikidata | https://www.wikidata.org/wiki/Q7094 |
| concepts[20].display_name | Biochemistry |
| concepts[21].id | https://openalex.org/C77805123 |
| concepts[21].level | 1 |
| concepts[21].score | 0.0 |
| concepts[21].wikidata | https://www.wikidata.org/wiki/Q161272 |
| concepts[21].display_name | Social psychology |
| concepts[22].id | https://openalex.org/C162324750 |
| concepts[22].level | 0 |
| concepts[22].score | 0.0 |
| concepts[22].wikidata | https://www.wikidata.org/wiki/Q8134 |
| concepts[22].display_name | Economics |
| concepts[23].id | https://openalex.org/C542102704 |
| concepts[23].level | 1 |
| concepts[23].score | 0.0 |
| concepts[23].wikidata | https://www.wikidata.org/wiki/Q183257 |
| concepts[23].display_name | Psychotherapist |
| concepts[24].id | https://openalex.org/C94625758 |
| concepts[24].level | 2 |
| concepts[24].score | 0.0 |
| concepts[24].wikidata | https://www.wikidata.org/wiki/Q7163 |
| concepts[24].display_name | Politics |
| concepts[25].id | https://openalex.org/C2524010 |
| concepts[25].level | 1 |
| concepts[25].score | 0.0 |
| concepts[25].wikidata | https://www.wikidata.org/wiki/Q8087 |
| concepts[25].display_name | Geometry |
| concepts[26].id | https://openalex.org/C17744445 |
| concepts[26].level | 0 |
| concepts[26].score | 0.0 |
| concepts[26].wikidata | https://www.wikidata.org/wiki/Q36442 |
| concepts[26].display_name | Political science |
| keywords[0].id | https://openalex.org/keywords/reinforcement-learning |
| keywords[0].score | 0.8328930139541626 |
| keywords[0].display_name | Reinforcement learning |
| keywords[1].id | https://openalex.org/keywords/generality |
| keywords[1].score | 0.769112229347229 |
| keywords[1].display_name | Generality |
| keywords[2].id | https://openalex.org/keywords/computer-science |
| keywords[2].score | 0.7238506078720093 |
| keywords[2].display_name | Computer science |
| keywords[3].id | https://openalex.org/keywords/orthogonality |
| keywords[3].score | 0.6590904593467712 |
| keywords[3].display_name | Orthogonality |
| keywords[4].id | https://openalex.org/keywords/transfer-of-learning |
| keywords[4].score | 0.6553243398666382 |
| keywords[4].display_name | Transfer of learning |
| keywords[5].id | https://openalex.org/keywords/representation |
| keywords[5].score | 0.6202625036239624 |
| keywords[5].display_name | Representation (politics) |
| keywords[6].id | https://openalex.org/keywords/task |
| keywords[6].score | 0.586434006690979 |
| keywords[6].display_name | Task (project management) |
| keywords[7].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[7].score | 0.5765403509140015 |
| keywords[7].display_name | Artificial intelligence |
| keywords[8].id | https://openalex.org/keywords/encode |
| keywords[8].score | 0.5038804411888123 |
| keywords[8].display_name | ENCODE |
| keywords[9].id | https://openalex.org/keywords/similarity |
| keywords[9].score | 0.5015625953674316 |
| keywords[9].display_name | Similarity (geometry) |
| keywords[10].id | https://openalex.org/keywords/contrast |
| keywords[10].score | 0.42499709129333496 |
| keywords[10].display_name | Contrast (vision) |
| keywords[11].id | https://openalex.org/keywords/reinforcement |
| keywords[11].score | 0.421725332736969 |
| keywords[11].display_name | Reinforcement |
| keywords[12].id | https://openalex.org/keywords/machine-learning |
| keywords[12].score | 0.369299978017807 |
| keywords[12].display_name | Machine learning |
| keywords[13].id | https://openalex.org/keywords/mathematics |
| keywords[13].score | 0.08315965533256531 |
| keywords[13].display_name | Mathematics |
| keywords[14].id | https://openalex.org/keywords/image |
| keywords[14].score | 0.06861615180969238 |
| keywords[14].display_name | Image (mathematics) |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2203.15955 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2203.15955 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2203.15955 |
| locations[1].id | doi:10.48550/arxiv.2203.15955 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | cc-by |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | https://openalex.org/licenses/cc-by |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2203.15955 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5100452641 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-5448-9903 |
| authorships[0].author.display_name | Han Wang |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Wang, Han |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5039112941 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-7510-083X |
| authorships[1].author.display_name | Erfan Miahi |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Miahi, Erfan |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5101613484 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-5356-2950 |
| authorships[2].author.display_name | Martha White |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | White, Martha |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5085413987 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-0117-6134 |
| authorships[3].author.display_name | Marlos C. Machado |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Machado, Marlos C. |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5007340698 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-1300-7098 |
| authorships[4].author.display_name | Zaheer Abbas |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Abbas, Zaheer |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5021470452 |
| authorships[5].author.orcid | |
| authorships[5].author.display_name | Raksha Kumaraswamy |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Kumaraswamy, Raksha |
| authorships[5].is_corresponding | False |
| authorships[6].author.id | https://openalex.org/A5101890152 |
| authorships[6].author.orcid | https://orcid.org/0000-0001-7683-208X |
| authorships[6].author.display_name | Vincent Liu |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Liu, Vincent |
| authorships[6].is_corresponding | False |
| authorships[7].author.id | https://openalex.org/A5108583544 |
| authorships[7].author.orcid | |
| authorships[7].author.display_name | Adam White |
| authorships[7].author_position | last |
| authorships[7].raw_author_name | White, Adam |
| authorships[7].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2203.15955 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Investigating the Properties of Neural Network Representations in Reinforcement Learning |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10462 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9972000122070312 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Reinforcement Learning in Robotics |
| related_works | https://openalex.org/W2045049461, https://openalex.org/W1978893398, https://openalex.org/W2201908702, https://openalex.org/W4381094582, https://openalex.org/W2369625323, https://openalex.org/W2364579609, https://openalex.org/W1977906818, https://openalex.org/W1522139108, https://openalex.org/W2353528968, https://openalex.org/W2032776242 |
| cited_by_count | 1 |
| counts_by_year[0].year | 2023 |
| counts_by_year[0].cited_by_count | 1 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2203.15955 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2203.15955 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2203.15955 |
| primary_location.id | pmh:oai:arXiv.org:2203.15955 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2203.15955 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2203.15955 |
| publication_date | 2022-03-30 |
| publication_year | 2022 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 127, 143, 156, 183 |
| abstract_inverted_index.-- | 74 |
| abstract_inverted_index.25 | 113 |
| abstract_inverted_index.In | 0, 42, 82 |
| abstract_inverted_index.We | 103, 117, 141, 171 |
| abstract_inverted_index.as | 38 |
| abstract_inverted_index.be | 35 |
| abstract_inverted_index.by | 10, 178, 182 |
| abstract_inverted_index.in | 100, 126, 192 |
| abstract_inverted_index.is | 51 |
| abstract_inverted_index.of | 7, 16, 71, 95, 175 |
| abstract_inverted_index.on | 20, 26 |
| abstract_inverted_index.to | 30, 34, 137, 145 |
| abstract_inverted_index.we | 3, 85 |
| abstract_inverted_index.and | 40, 105, 133, 162, 164 |
| abstract_inverted_index.but | 61 |
| abstract_inverted_index.for | 22, 153 |
| abstract_inverted_index.not | 57 |
| abstract_inverted_index.six | 107 |
| abstract_inverted_index.the | 5, 17, 44, 53, 64, 69, 72, 93, 173, 176 |
| abstract_inverted_index.two | 88 |
| abstract_inverted_index.why | 148 |
| abstract_inverted_index.Deep | 119 |
| abstract_inverted_index.Much | 15 |
| abstract_inverted_index.data | 65 |
| abstract_inverted_index.deep | 11, 47 |
| abstract_inverted_index.goal | 139 |
| abstract_inverted_index.good | 75 |
| abstract_inverted_index.idea | 45 |
| abstract_inverted_index.more | 111 |
| abstract_inverted_index.over | 110 |
| abstract_inverted_index.some | 149 |
| abstract_inverted_index.such | 37 |
| abstract_inverted_index.task | 160 |
| abstract_inverted_index.than | 112 |
| abstract_inverted_index.that | 52, 63, 97, 186 |
| abstract_inverted_index.this | 1, 83 |
| abstract_inverted_index.with | 122, 131, 168 |
| abstract_inverted_index.work | 19, 151 |
| abstract_inverted_index.2600. | 194 |
| abstract_inverted_index.Atari | 193 |
| abstract_inverted_index.agent | 54, 185 |
| abstract_inverted_index.bring | 86 |
| abstract_inverted_index.early | 18 |
| abstract_inverted_index.games | 190 |
| abstract_inverted_index.modes | 191 |
| abstract_inverted_index.paper | 2, 84 |
| abstract_inverted_index.tasks | 135 |
| abstract_inverted_index.these | 87 |
| abstract_inverted_index.under | 78 |
| abstract_inverted_index.across | 189 |
| abstract_inverted_index.agents | 121 |
| abstract_inverted_index.behind | 46 |
| abstract_inverted_index.better | 146, 152 |
| abstract_inverted_index.emerge | 77 |
| abstract_inverted_index.encode | 58 |
| abstract_inverted_index.losses | 125 |
| abstract_inverted_index.method | 144 |
| abstract_inverted_index.rather | 62 |
| abstract_inverted_index.should | 56, 67 |
| abstract_inverted_index.source | 132 |
| abstract_inverted_index.stream | 66 |
| abstract_inverted_index.Rainbow | 184 |
| abstract_inverted_index.achieve | 31 |
| abstract_inverted_index.develop | 142 |
| abstract_inverted_index.focused | 25 |
| abstract_inverted_index.learned | 9, 181 |
| abstract_inverted_index.measure | 106 |
| abstract_inverted_index.methods | 50 |
| abstract_inverted_index.support | 98 |
| abstract_inverted_index.thought | 33 |
| abstract_inverted_index.through | 155 |
| abstract_inverted_index.varying | 159 |
| abstract_inverted_index.approach | 158 |
| abstract_inverted_index.consider | 118 |
| abstract_inverted_index.designer | 55 |
| abstract_inverted_index.learning | 13, 24, 49 |
| abstract_inverted_index.schemes. | 81 |
| abstract_inverted_index.systems. | 14 |
| abstract_inverted_index.thousand | 114 |
| abstract_inverted_index.training | 80 |
| abstract_inverted_index.transfer | 99, 134, 169, 188 |
| abstract_inverted_index.auxiliary | 124 |
| abstract_inverted_index.contrast, | 43 |
| abstract_inverted_index.designing | 27 |
| abstract_inverted_index.determine | 68 |
| abstract_inverted_index.different | 123, 138 |
| abstract_inverted_index.introduce | 104 |
| abstract_inverted_index.learning. | 102 |
| abstract_inverted_index.measuring | 163 |
| abstract_inverted_index.settings. | 116 |
| abstract_inverted_index.sparsity. | 41 |
| abstract_inverted_index.together, | 90 |
| abstract_inverted_index.transfer, | 154 |
| abstract_inverted_index.Q-learning | 120 |
| abstract_inverted_index.agent-task | 115 |
| abstract_inverted_index.desirable, | 36 |
| abstract_inverted_index.generality | 174 |
| abstract_inverted_index.locations. | 140 |
| abstract_inverted_index.navigation | 129 |
| abstract_inverted_index.properties | 6, 32, 70, 94, 109, 167 |
| abstract_inverted_index.similarity | 161 |
| abstract_inverted_index.systematic | 157 |
| abstract_inverted_index.understand | 147 |
| abstract_inverted_index.appropriate | 79 |
| abstract_inverted_index.correlating | 165 |
| abstract_inverted_index.demonstrate | 172 |
| abstract_inverted_index.empirically | 91 |
| abstract_inverted_index.fixed-basis | 28 |
| abstract_inverted_index.investigate | 4 |
| abstract_inverted_index.methodology | 177 |
| abstract_inverted_index.pixel-based | 128 |
| abstract_inverted_index.properties, | 60 |
| abstract_inverted_index.environment, | 130 |
| abstract_inverted_index.performance. | 170 |
| abstract_inverted_index.perspectives | 89 |
| abstract_inverted_index.successfully | 187 |
| abstract_inverted_index.architectures | 29 |
| abstract_inverted_index.corresponding | 136 |
| abstract_inverted_index.investigating | 92, 179 |
| abstract_inverted_index.orthogonality | 39 |
| abstract_inverted_index.reinforcement | 12, 23, 48, 101 |
| abstract_inverted_index.representation | 73, 166 |
| abstract_inverted_index.representations | 8, 21, 76, 96, 150, 180 |
| abstract_inverted_index.representational | 59, 108 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 8 |
| citation_normalized_percentile |