Investigation of the influence of blocks on the linear spectrum for synthetic speech detection Article Swipe
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.1049/ell2.12797
In recent years, constant‐Q cepstral coefficient (CQCC) has successfully used in synthetic speech detection (SSD), however, linear‐domain logarithm power spectrum (LLPS) information is not fully captured by discrete cosine transform (DCT) in CQCC extraction and how the block affects the LLPS information extraction for SSD has not been investigated in the previous studies. In order to investigate how the block affects the LLPS information extraction and extract more detailed information from LLPS for SSD, a new feature, constant‐Q block coefficient (CQBC), is proposed by modifying CQCC using block transform plus DCT on LLPS in this letter. Furthermore, how the length of block affects the performance is deeply investigated in this work. The experimental result on ASVspoof 2015 evaluation set indicates that: (1) there is much difference in the performance for different length block (2) CQBC‐DA can improve the performance of SSD and its average equal error rate can reach 0.0724, which decline 36% compared with CQCC‐DA (3) CQBC‐DA is superior to many front‐ends that have been benchmarked in terms of average equal error rate.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1049/ell2.12797
- https://onlinelibrary.wiley.com/doi/pdfdirect/10.1049/ell2.12797
- OA Status
- gold
- Cited By
- 1
- References
- 10
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4382619839
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4382619839Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1049/ell2.12797Digital Object Identifier
- Title
-
Investigation of the influence of blocks on the linear spectrum for synthetic speech detectionWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-05-01Full publication date if available
- Authors
-
Wei Li, Jichen Yang, Pei LinList of authors in order
- Landing page
-
https://doi.org/10.1049/ell2.12797Publisher landing page
- PDF URL
-
https://onlinelibrary.wiley.com/doi/pdfdirect/10.1049/ell2.12797Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://onlinelibrary.wiley.com/doi/pdfdirect/10.1049/ell2.12797Direct OA link when available
- Concepts
-
Discrete cosine transform, Logarithm, Block (permutation group theory), Algorithm, Computer science, Cepstrum, Speech recognition, Mathematics, Constant (computer programming), Word error rate, Feature extraction, Pattern recognition (psychology), Artificial intelligence, Image (mathematics), Mathematical analysis, Combinatorics, Programming languageTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
1Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1Per-year citation counts (last 5 years)
- References (count)
-
10Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4382619839 |
|---|---|
| doi | https://doi.org/10.1049/ell2.12797 |
| ids.doi | https://doi.org/10.1049/ell2.12797 |
| ids.openalex | https://openalex.org/W4382619839 |
| fwci | 0.25544289 |
| type | article |
| title | Investigation of the influence of blocks on the linear spectrum for synthetic speech detection |
| awards[0].id | https://openalex.org/G1776316156 |
| awards[0].funder_id | https://openalex.org/F4320326279 |
| awards[0].display_name | |
| awards[0].funder_award_id | 2020CJPT006 |
| awards[0].funder_display_name | Department of Education of Guangdong Province |
| awards[1].id | https://openalex.org/G2085859341 |
| awards[1].funder_id | https://openalex.org/F4320326279 |
| awards[1].display_name | |
| awards[1].funder_award_id | 2019KZDZX1045 |
| awards[1].funder_display_name | Department of Education of Guangdong Province |
| awards[2].id | https://openalex.org/G2378791620 |
| awards[2].funder_id | https://openalex.org/F4320326279 |
| awards[2].display_name | |
| awards[2].funder_award_id | JSJJZW2021015 |
| awards[2].funder_display_name | Department of Education of Guangdong Province |
| awards[3].id | https://openalex.org/G547827103 |
| awards[3].funder_id | https://openalex.org/F4320326279 |
| awards[3].display_name | |
| awards[3].funder_award_id | GDJG2021151 |
| awards[3].funder_display_name | Department of Education of Guangdong Province |
| biblio.issue | 9 |
| biblio.volume | 59 |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10201 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9997000098228455 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Speech Recognition and Synthesis |
| topics[1].id | https://openalex.org/T10860 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9997000098228455 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1711 |
| topics[1].subfield.display_name | Signal Processing |
| topics[1].display_name | Speech and Audio Processing |
| topics[2].id | https://openalex.org/T11309 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9886999726295471 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1711 |
| topics[2].subfield.display_name | Signal Processing |
| topics[2].display_name | Music and Audio Processing |
| funders[0].id | https://openalex.org/F4320326279 |
| funders[0].ror | |
| funders[0].display_name | Department of Education of Guangdong Province |
| is_xpac | False |
| apc_list.value | 2200 |
| apc_list.currency | USD |
| apc_list.value_usd | 2200 |
| apc_paid.value | 2200 |
| apc_paid.currency | USD |
| apc_paid.value_usd | 2200 |
| concepts[0].id | https://openalex.org/C2221639 |
| concepts[0].level | 3 |
| concepts[0].score | 0.7867938280105591 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q2877 |
| concepts[0].display_name | Discrete cosine transform |
| concepts[1].id | https://openalex.org/C39927690 |
| concepts[1].level | 2 |
| concepts[1].score | 0.7320270538330078 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q11197 |
| concepts[1].display_name | Logarithm |
| concepts[2].id | https://openalex.org/C2777210771 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6978090405464172 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q4927124 |
| concepts[2].display_name | Block (permutation group theory) |
| concepts[3].id | https://openalex.org/C11413529 |
| concepts[3].level | 1 |
| concepts[3].score | 0.5200868844985962 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[3].display_name | Algorithm |
| concepts[4].id | https://openalex.org/C41008148 |
| concepts[4].level | 0 |
| concepts[4].score | 0.4973779022693634 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[4].display_name | Computer science |
| concepts[5].id | https://openalex.org/C88485024 |
| concepts[5].level | 2 |
| concepts[5].score | 0.49618038535118103 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q1054571 |
| concepts[5].display_name | Cepstrum |
| concepts[6].id | https://openalex.org/C28490314 |
| concepts[6].level | 1 |
| concepts[6].score | 0.4662064015865326 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q189436 |
| concepts[6].display_name | Speech recognition |
| concepts[7].id | https://openalex.org/C33923547 |
| concepts[7].level | 0 |
| concepts[7].score | 0.44728583097457886 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[7].display_name | Mathematics |
| concepts[8].id | https://openalex.org/C2777027219 |
| concepts[8].level | 2 |
| concepts[8].score | 0.44664767384529114 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q1284190 |
| concepts[8].display_name | Constant (computer programming) |
| concepts[9].id | https://openalex.org/C40969351 |
| concepts[9].level | 2 |
| concepts[9].score | 0.42028239369392395 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q3516228 |
| concepts[9].display_name | Word error rate |
| concepts[10].id | https://openalex.org/C52622490 |
| concepts[10].level | 2 |
| concepts[10].score | 0.4201869070529938 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q1026626 |
| concepts[10].display_name | Feature extraction |
| concepts[11].id | https://openalex.org/C153180895 |
| concepts[11].level | 2 |
| concepts[11].score | 0.36449939012527466 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[11].display_name | Pattern recognition (psychology) |
| concepts[12].id | https://openalex.org/C154945302 |
| concepts[12].level | 1 |
| concepts[12].score | 0.2639772295951843 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[12].display_name | Artificial intelligence |
| concepts[13].id | https://openalex.org/C115961682 |
| concepts[13].level | 2 |
| concepts[13].score | 0.13834285736083984 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q860623 |
| concepts[13].display_name | Image (mathematics) |
| concepts[14].id | https://openalex.org/C134306372 |
| concepts[14].level | 1 |
| concepts[14].score | 0.10892415046691895 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q7754 |
| concepts[14].display_name | Mathematical analysis |
| concepts[15].id | https://openalex.org/C114614502 |
| concepts[15].level | 1 |
| concepts[15].score | 0.09607386589050293 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q76592 |
| concepts[15].display_name | Combinatorics |
| concepts[16].id | https://openalex.org/C199360897 |
| concepts[16].level | 1 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q9143 |
| concepts[16].display_name | Programming language |
| keywords[0].id | https://openalex.org/keywords/discrete-cosine-transform |
| keywords[0].score | 0.7867938280105591 |
| keywords[0].display_name | Discrete cosine transform |
| keywords[1].id | https://openalex.org/keywords/logarithm |
| keywords[1].score | 0.7320270538330078 |
| keywords[1].display_name | Logarithm |
| keywords[2].id | https://openalex.org/keywords/block |
| keywords[2].score | 0.6978090405464172 |
| keywords[2].display_name | Block (permutation group theory) |
| keywords[3].id | https://openalex.org/keywords/algorithm |
| keywords[3].score | 0.5200868844985962 |
| keywords[3].display_name | Algorithm |
| keywords[4].id | https://openalex.org/keywords/computer-science |
| keywords[4].score | 0.4973779022693634 |
| keywords[4].display_name | Computer science |
| keywords[5].id | https://openalex.org/keywords/cepstrum |
| keywords[5].score | 0.49618038535118103 |
| keywords[5].display_name | Cepstrum |
| keywords[6].id | https://openalex.org/keywords/speech-recognition |
| keywords[6].score | 0.4662064015865326 |
| keywords[6].display_name | Speech recognition |
| keywords[7].id | https://openalex.org/keywords/mathematics |
| keywords[7].score | 0.44728583097457886 |
| keywords[7].display_name | Mathematics |
| keywords[8].id | https://openalex.org/keywords/constant |
| keywords[8].score | 0.44664767384529114 |
| keywords[8].display_name | Constant (computer programming) |
| keywords[9].id | https://openalex.org/keywords/word-error-rate |
| keywords[9].score | 0.42028239369392395 |
| keywords[9].display_name | Word error rate |
| keywords[10].id | https://openalex.org/keywords/feature-extraction |
| keywords[10].score | 0.4201869070529938 |
| keywords[10].display_name | Feature extraction |
| keywords[11].id | https://openalex.org/keywords/pattern-recognition |
| keywords[11].score | 0.36449939012527466 |
| keywords[11].display_name | Pattern recognition (psychology) |
| keywords[12].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[12].score | 0.2639772295951843 |
| keywords[12].display_name | Artificial intelligence |
| keywords[13].id | https://openalex.org/keywords/image |
| keywords[13].score | 0.13834285736083984 |
| keywords[13].display_name | Image (mathematics) |
| keywords[14].id | https://openalex.org/keywords/mathematical-analysis |
| keywords[14].score | 0.10892415046691895 |
| keywords[14].display_name | Mathematical analysis |
| keywords[15].id | https://openalex.org/keywords/combinatorics |
| keywords[15].score | 0.09607386589050293 |
| keywords[15].display_name | Combinatorics |
| language | en |
| locations[0].id | doi:10.1049/ell2.12797 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S149016011 |
| locations[0].source.issn | 0013-5194, 1350-911X |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 0013-5194 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Electronics Letters |
| locations[0].source.host_organization | https://openalex.org/P4310311714 |
| locations[0].source.host_organization_name | Institution of Engineering and Technology |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310311714 |
| locations[0].source.host_organization_lineage_names | Institution of Engineering and Technology |
| locations[0].license | cc-by-nc-nd |
| locations[0].pdf_url | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1049/ell2.12797 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by-nc-nd |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Electronics Letters |
| locations[0].landing_page_url | https://doi.org/10.1049/ell2.12797 |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5100318161 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-3135-0447 |
| authorships[0].author.display_name | Wei Li |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I32820368 |
| authorships[0].affiliations[0].raw_affiliation_string | Computer Engineering Technical College, Guangdong Polytechnic of Science and Technology, Zhuhai, China |
| authorships[0].institutions[0].id | https://openalex.org/I32820368 |
| authorships[0].institutions[0].ror | https://ror.org/01wq2p249 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I32820368 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Guangdong Polytechnic of Science and Technology |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Wei Li |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Computer Engineering Technical College, Guangdong Polytechnic of Science and Technology, Zhuhai, China |
| authorships[1].author.id | https://openalex.org/A5101406845 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-2655-8304 |
| authorships[1].author.display_name | Jichen Yang |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].raw_affiliation_string | Email: [email protected] |
| authorships[1].affiliations[1].institution_ids | https://openalex.org/I4210122543 |
| authorships[1].affiliations[1].raw_affiliation_string | School of Cyber Security, Guangdong Polytechnic Normal University, Guangzhou, China |
| authorships[1].institutions[0].id | https://openalex.org/I4210122543 |
| authorships[1].institutions[0].ror | https://ror.org/02pcb5m77 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I4210122543 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Guangdong Polytechnic Normal University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Jichen Yang |
| authorships[1].is_corresponding | True |
| authorships[1].raw_affiliation_strings | Email: [email protected], School of Cyber Security, Guangdong Polytechnic Normal University, Guangzhou, China |
| authorships[2].author.id | https://openalex.org/A5049207865 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-3300-5241 |
| authorships[2].author.display_name | Pei Lin |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I4210122543 |
| authorships[2].affiliations[0].raw_affiliation_string | School of Electronic and Information, Guangdong Polytechnic Normal University, Guangzhou, China |
| authorships[2].institutions[0].id | https://openalex.org/I4210122543 |
| authorships[2].institutions[0].ror | https://ror.org/02pcb5m77 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I4210122543 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | Guangdong Polytechnic Normal University |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Pei Lin |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | School of Electronic and Information, Guangdong Polytechnic Normal University, Guangzhou, China |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1049/ell2.12797 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Investigation of the influence of blocks on the linear spectrum for synthetic speech detection |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10201 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9997000098228455 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Speech Recognition and Synthesis |
| related_works | https://openalex.org/W2100203012, https://openalex.org/W2353790262, https://openalex.org/W1916685473, https://openalex.org/W2055682261, https://openalex.org/W2368338897, https://openalex.org/W2893674991, https://openalex.org/W2108727544, https://openalex.org/W2151094759, https://openalex.org/W1975907141, https://openalex.org/W2373675101 |
| cited_by_count | 1 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| locations_count | 1 |
| best_oa_location.id | doi:10.1049/ell2.12797 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S149016011 |
| best_oa_location.source.issn | 0013-5194, 1350-911X |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 0013-5194 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Electronics Letters |
| best_oa_location.source.host_organization | https://openalex.org/P4310311714 |
| best_oa_location.source.host_organization_name | Institution of Engineering and Technology |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310311714 |
| best_oa_location.source.host_organization_lineage_names | Institution of Engineering and Technology |
| best_oa_location.license | cc-by-nc-nd |
| best_oa_location.pdf_url | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1049/ell2.12797 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by-nc-nd |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Electronics Letters |
| best_oa_location.landing_page_url | https://doi.org/10.1049/ell2.12797 |
| primary_location.id | doi:10.1049/ell2.12797 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S149016011 |
| primary_location.source.issn | 0013-5194, 1350-911X |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 0013-5194 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Electronics Letters |
| primary_location.source.host_organization | https://openalex.org/P4310311714 |
| primary_location.source.host_organization_name | Institution of Engineering and Technology |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310311714 |
| primary_location.source.host_organization_lineage_names | Institution of Engineering and Technology |
| primary_location.license | cc-by-nc-nd |
| primary_location.pdf_url | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1049/ell2.12797 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by-nc-nd |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Electronics Letters |
| primary_location.landing_page_url | https://doi.org/10.1049/ell2.12797 |
| publication_date | 2023-05-01 |
| publication_year | 2023 |
| referenced_works | https://openalex.org/W2294013337, https://openalex.org/W2403139431, https://openalex.org/W2407170210, https://openalex.org/W2303197844, https://openalex.org/W2576165910, https://openalex.org/W2564082391, https://openalex.org/W2602814339, https://openalex.org/W2990833974, https://openalex.org/W2991187463, https://openalex.org/W3041532666 |
| referenced_works_count | 10 |
| abstract_inverted_index.a | 75 |
| abstract_inverted_index.In | 1, 54 |
| abstract_inverted_index.by | 27, 84 |
| abstract_inverted_index.in | 11, 32, 50, 94, 109, 127, 168 |
| abstract_inverted_index.is | 23, 82, 106, 124, 159 |
| abstract_inverted_index.of | 101, 140, 170 |
| abstract_inverted_index.on | 92, 115 |
| abstract_inverted_index.to | 56, 161 |
| abstract_inverted_index.(1) | 122 |
| abstract_inverted_index.(2) | 134 |
| abstract_inverted_index.(3) | 157 |
| abstract_inverted_index.36% | 153 |
| abstract_inverted_index.DCT | 91 |
| abstract_inverted_index.SSD | 45, 141 |
| abstract_inverted_index.The | 112 |
| abstract_inverted_index.and | 35, 66, 142 |
| abstract_inverted_index.can | 136, 148 |
| abstract_inverted_index.for | 44, 73, 130 |
| abstract_inverted_index.has | 8, 46 |
| abstract_inverted_index.how | 36, 58, 98 |
| abstract_inverted_index.its | 143 |
| abstract_inverted_index.new | 76 |
| abstract_inverted_index.not | 24, 47 |
| abstract_inverted_index.set | 119 |
| abstract_inverted_index.the | 37, 40, 51, 59, 62, 99, 104, 128, 138 |
| abstract_inverted_index.2015 | 117 |
| abstract_inverted_index.CQCC | 33, 86 |
| abstract_inverted_index.LLPS | 41, 63, 72, 93 |
| abstract_inverted_index.SSD, | 74 |
| abstract_inverted_index.been | 48, 166 |
| abstract_inverted_index.from | 71 |
| abstract_inverted_index.have | 165 |
| abstract_inverted_index.many | 162 |
| abstract_inverted_index.more | 68 |
| abstract_inverted_index.much | 125 |
| abstract_inverted_index.plus | 90 |
| abstract_inverted_index.rate | 147 |
| abstract_inverted_index.that | 164 |
| abstract_inverted_index.this | 95, 110 |
| abstract_inverted_index.used | 10 |
| abstract_inverted_index.with | 155 |
| abstract_inverted_index.(DCT) | 31 |
| abstract_inverted_index.block | 38, 60, 79, 88, 102, 133 |
| abstract_inverted_index.equal | 145, 172 |
| abstract_inverted_index.error | 146, 173 |
| abstract_inverted_index.fully | 25 |
| abstract_inverted_index.order | 55 |
| abstract_inverted_index.power | 19 |
| abstract_inverted_index.rate. | 174 |
| abstract_inverted_index.reach | 149 |
| abstract_inverted_index.terms | 169 |
| abstract_inverted_index.that: | 121 |
| abstract_inverted_index.there | 123 |
| abstract_inverted_index.using | 87 |
| abstract_inverted_index.which | 151 |
| abstract_inverted_index.work. | 111 |
| abstract_inverted_index.(CQCC) | 7 |
| abstract_inverted_index.(LLPS) | 21 |
| abstract_inverted_index.(SSD), | 15 |
| abstract_inverted_index.cosine | 29 |
| abstract_inverted_index.deeply | 107 |
| abstract_inverted_index.length | 100, 132 |
| abstract_inverted_index.recent | 2 |
| abstract_inverted_index.result | 114 |
| abstract_inverted_index.speech | 13 |
| abstract_inverted_index.years, | 3 |
| abstract_inverted_index.(CQBC), | 81 |
| abstract_inverted_index.0.0724, | 150 |
| abstract_inverted_index.affects | 39, 61, 103 |
| abstract_inverted_index.average | 144, 171 |
| abstract_inverted_index.decline | 152 |
| abstract_inverted_index.extract | 67 |
| abstract_inverted_index.improve | 137 |
| abstract_inverted_index.letter. | 96 |
| abstract_inverted_index.ASVspoof | 116 |
| abstract_inverted_index.Abstract | 0 |
| abstract_inverted_index.captured | 26 |
| abstract_inverted_index.cepstral | 5 |
| abstract_inverted_index.compared | 154 |
| abstract_inverted_index.detailed | 69 |
| abstract_inverted_index.discrete | 28 |
| abstract_inverted_index.feature, | 77 |
| abstract_inverted_index.however, | 16 |
| abstract_inverted_index.previous | 52 |
| abstract_inverted_index.proposed | 83 |
| abstract_inverted_index.spectrum | 20 |
| abstract_inverted_index.studies. | 53 |
| abstract_inverted_index.superior | 160 |
| abstract_inverted_index.CQBC‐DA | 135, 158 |
| abstract_inverted_index.CQCC‐DA | 156 |
| abstract_inverted_index.detection | 14 |
| abstract_inverted_index.different | 131 |
| abstract_inverted_index.indicates | 120 |
| abstract_inverted_index.logarithm | 18 |
| abstract_inverted_index.modifying | 85 |
| abstract_inverted_index.synthetic | 12 |
| abstract_inverted_index.transform | 30, 89 |
| abstract_inverted_index.difference | 126 |
| abstract_inverted_index.evaluation | 118 |
| abstract_inverted_index.extraction | 34, 43, 65 |
| abstract_inverted_index.benchmarked | 167 |
| abstract_inverted_index.coefficient | 6, 80 |
| abstract_inverted_index.information | 22, 42, 64, 70 |
| abstract_inverted_index.investigate | 57 |
| abstract_inverted_index.performance | 105, 129, 139 |
| abstract_inverted_index.Furthermore, | 97 |
| abstract_inverted_index.constant‐Q | 4, 78 |
| abstract_inverted_index.experimental | 113 |
| abstract_inverted_index.front‐ends | 163 |
| abstract_inverted_index.investigated | 49, 108 |
| abstract_inverted_index.successfully | 9 |
| abstract_inverted_index.linear‐domain | 17 |
| cited_by_percentile_year.max | 95 |
| cited_by_percentile_year.min | 91 |
| corresponding_author_ids | https://openalex.org/A5101406845 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 3 |
| corresponding_institution_ids | https://openalex.org/I4210122543 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/16 |
| sustainable_development_goals[0].score | 0.4300000071525574 |
| sustainable_development_goals[0].display_name | Peace, Justice and strong institutions |
| citation_normalized_percentile.value | 0.55604655 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |