I/O-Efficient Event Based Depression Flood Risk Article Swipe
YOU?
·
· 2017
· Open Access
·
· DOI: https://doi.org/10.1137/1.9781611974768.21
An important problem in terrain analysis is modeling how water flows across a terrain and creates floods by filling up depressions. The accuracy of such modeling depends critically on the precision of the terrain data, and available high-resolution terrain models of even fairly small geographic regions often exceed the size of a computer's main memory. In such cases movement of data between main memory and external memory (such as disk) is often the bottleneck in the computation. Thus it is important to develop I/O-efficient modeling algorithms, that is, algorithms that minimize the movement of blocks of data between main memory and disk.In this paper we develop practically I/O-efficient algorithms for the problem of computing the areas of a terrain that are flooded in a given flash flood event due to water collecting in depressions. Previous work only considered events where rain falls at a constant uniform rate on the entire terrain. In reality, local extreme flash floods can affect downstream areas that do not receive heavy rainfall directly, so it is important to model such non-uniform events. Our main algorithm uses 풪(Sort(N)+Scan(H·X)) I/Os, where N is the size of the terrain, Sort(N) and Scan(N) are the number of I/Os required to sort and read N elements in the standard two-level I/O-model, respectively, X is the number of sinks in the terrain and H the height of the so-called merge-tree, which is a hierarchical representation of the depressions of the terrain. Under practically realistic assumptions about the main memory size compared to X and H, we also develop 풪(Sort(N)) I/O-algorithms. One of these algorithms can handle an event in optimal 풪(Scan(N)) I/Os after using 풪(Sort(N)) I/Os on preprocessing the terrain. We have implemented our algorithms and show that they work very well in practice.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1137/1.9781611974768.21
- https://epubs.siam.org/doi/pdf/10.1137/1.9781611974768.21
- OA Status
- gold
- Cited By
- 6
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W2567974898
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W2567974898Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1137/1.9781611974768.21Digital Object Identifier
- Title
-
I/O-Efficient Event Based Depression Flood RiskWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2017Year of publication
- Publication date
-
2017-01-01Full publication date if available
- Authors
-
Lars Arge, Mathias Rav, Sarfraz Raza, Morten RevsbækList of authors in order
- Landing page
-
https://doi.org/10.1137/1.9781611974768.21Publisher landing page
- PDF URL
-
https://epubs.siam.org/doi/pdf/10.1137/1.9781611974768.21Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://epubs.siam.org/doi/pdf/10.1137/1.9781611974768.21Direct OA link when available
- Concepts
-
Terrain, sort, Computer science, Flash flood, Flood myth, Quadtree, Merge (version control), Bottleneck, Computation, Algorithm, Parallel computing, Geography, Database, Cartography, Archaeology, Embedded systemTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
6Total citation count in OpenAlex
- Citations by year (recent)
-
2020: 2, 2019: 2, 2018: 1, 2017: 1Per-year citation counts (last 5 years)
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W2567974898 |
|---|---|
| doi | https://doi.org/10.1137/1.9781611974768.21 |
| ids.doi | https://doi.org/10.1137/1.9781611974768.21 |
| ids.mag | 2567974898 |
| ids.openalex | https://openalex.org/W2567974898 |
| fwci | 1.06821265 |
| type | article |
| title | I/O-Efficient Event Based Depression Flood Risk |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | 269 |
| biblio.first_page | 259 |
| topics[0].id | https://openalex.org/T10330 |
| topics[0].field.id | https://openalex.org/fields/23 |
| topics[0].field.display_name | Environmental Science |
| topics[0].score | 0.9775999784469604 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2312 |
| topics[0].subfield.display_name | Water Science and Technology |
| topics[0].display_name | Hydrology and Watershed Management Studies |
| topics[1].id | https://openalex.org/T11986 |
| topics[1].field.id | https://openalex.org/fields/18 |
| topics[1].field.display_name | Decision Sciences |
| topics[1].score | 0.9667999744415283 |
| topics[1].domain.id | https://openalex.org/domains/2 |
| topics[1].domain.display_name | Social Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1802 |
| topics[1].subfield.display_name | Information Systems and Management |
| topics[1].display_name | Scientific Computing and Data Management |
| topics[2].id | https://openalex.org/T10715 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9607999920845032 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1705 |
| topics[2].subfield.display_name | Computer Networks and Communications |
| topics[2].display_name | Distributed and Parallel Computing Systems |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C161840515 |
| concepts[0].level | 2 |
| concepts[0].score | 0.8847993612289429 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q186131 |
| concepts[0].display_name | Terrain |
| concepts[1].id | https://openalex.org/C88548561 |
| concepts[1].level | 2 |
| concepts[1].score | 0.7259331345558167 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q347599 |
| concepts[1].display_name | sort |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.7139914035797119 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| concepts[3].id | https://openalex.org/C120417685 |
| concepts[3].level | 3 |
| concepts[3].score | 0.6921467781066895 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q860333 |
| concepts[3].display_name | Flash flood |
| concepts[4].id | https://openalex.org/C74256435 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5551742911338806 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q134052 |
| concepts[4].display_name | Flood myth |
| concepts[5].id | https://openalex.org/C151416825 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5148550868034363 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q934791 |
| concepts[5].display_name | Quadtree |
| concepts[6].id | https://openalex.org/C197129107 |
| concepts[6].level | 2 |
| concepts[6].score | 0.5049548745155334 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q1921621 |
| concepts[6].display_name | Merge (version control) |
| concepts[7].id | https://openalex.org/C2780513914 |
| concepts[7].level | 2 |
| concepts[7].score | 0.4772213101387024 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q18210350 |
| concepts[7].display_name | Bottleneck |
| concepts[8].id | https://openalex.org/C45374587 |
| concepts[8].level | 2 |
| concepts[8].score | 0.46819743514060974 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q12525525 |
| concepts[8].display_name | Computation |
| concepts[9].id | https://openalex.org/C11413529 |
| concepts[9].level | 1 |
| concepts[9].score | 0.3822060823440552 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[9].display_name | Algorithm |
| concepts[10].id | https://openalex.org/C173608175 |
| concepts[10].level | 1 |
| concepts[10].score | 0.25992685556411743 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q232661 |
| concepts[10].display_name | Parallel computing |
| concepts[11].id | https://openalex.org/C205649164 |
| concepts[11].level | 0 |
| concepts[11].score | 0.13936743140220642 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q1071 |
| concepts[11].display_name | Geography |
| concepts[12].id | https://openalex.org/C77088390 |
| concepts[12].level | 1 |
| concepts[12].score | 0.11641216278076172 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q8513 |
| concepts[12].display_name | Database |
| concepts[13].id | https://openalex.org/C58640448 |
| concepts[13].level | 1 |
| concepts[13].score | 0.08715897798538208 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q42515 |
| concepts[13].display_name | Cartography |
| concepts[14].id | https://openalex.org/C166957645 |
| concepts[14].level | 1 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q23498 |
| concepts[14].display_name | Archaeology |
| concepts[15].id | https://openalex.org/C149635348 |
| concepts[15].level | 1 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q193040 |
| concepts[15].display_name | Embedded system |
| keywords[0].id | https://openalex.org/keywords/terrain |
| keywords[0].score | 0.8847993612289429 |
| keywords[0].display_name | Terrain |
| keywords[1].id | https://openalex.org/keywords/sort |
| keywords[1].score | 0.7259331345558167 |
| keywords[1].display_name | sort |
| keywords[2].id | https://openalex.org/keywords/computer-science |
| keywords[2].score | 0.7139914035797119 |
| keywords[2].display_name | Computer science |
| keywords[3].id | https://openalex.org/keywords/flash-flood |
| keywords[3].score | 0.6921467781066895 |
| keywords[3].display_name | Flash flood |
| keywords[4].id | https://openalex.org/keywords/flood-myth |
| keywords[4].score | 0.5551742911338806 |
| keywords[4].display_name | Flood myth |
| keywords[5].id | https://openalex.org/keywords/quadtree |
| keywords[5].score | 0.5148550868034363 |
| keywords[5].display_name | Quadtree |
| keywords[6].id | https://openalex.org/keywords/merge |
| keywords[6].score | 0.5049548745155334 |
| keywords[6].display_name | Merge (version control) |
| keywords[7].id | https://openalex.org/keywords/bottleneck |
| keywords[7].score | 0.4772213101387024 |
| keywords[7].display_name | Bottleneck |
| keywords[8].id | https://openalex.org/keywords/computation |
| keywords[8].score | 0.46819743514060974 |
| keywords[8].display_name | Computation |
| keywords[9].id | https://openalex.org/keywords/algorithm |
| keywords[9].score | 0.3822060823440552 |
| keywords[9].display_name | Algorithm |
| keywords[10].id | https://openalex.org/keywords/parallel-computing |
| keywords[10].score | 0.25992685556411743 |
| keywords[10].display_name | Parallel computing |
| keywords[11].id | https://openalex.org/keywords/geography |
| keywords[11].score | 0.13936743140220642 |
| keywords[11].display_name | Geography |
| keywords[12].id | https://openalex.org/keywords/database |
| keywords[12].score | 0.11641216278076172 |
| keywords[12].display_name | Database |
| keywords[13].id | https://openalex.org/keywords/cartography |
| keywords[13].score | 0.08715897798538208 |
| keywords[13].display_name | Cartography |
| language | en |
| locations[0].id | doi:10.1137/1.9781611974768.21 |
| locations[0].is_oa | True |
| locations[0].source | |
| locations[0].license | |
| locations[0].pdf_url | https://epubs.siam.org/doi/pdf/10.1137/1.9781611974768.21 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | proceedings-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | 2017 Proceedings of the Ninteenth Workshop on Algorithm Engineering and Experiments (ALENEX) |
| locations[0].landing_page_url | https://doi.org/10.1137/1.9781611974768.21 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5084056010 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Lars Arge |
| authorships[0].countries | DK |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I204337017, https://openalex.org/I4210095128 |
| authorships[0].affiliations[0].raw_affiliation_string | Aarhus University, Natural Sciences, Department of Computer Science, Department of Computer Science - Center for Massive Data Algoritmics, DK |
| authorships[0].institutions[0].id | https://openalex.org/I204337017 |
| authorships[0].institutions[0].ror | https://ror.org/01aj84f44 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I204337017 |
| authorships[0].institutions[0].country_code | DK |
| authorships[0].institutions[0].display_name | Aarhus University |
| authorships[0].institutions[1].id | https://openalex.org/I4210095128 |
| authorships[0].institutions[1].ror | https://ror.org/00qbzpp62 |
| authorships[0].institutions[1].type | facility |
| authorships[0].institutions[1].lineage | https://openalex.org/I4210095128 |
| authorships[0].institutions[1].country_code | DK |
| authorships[0].institutions[1].display_name | Center for Massive Data Algorithmics |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Lars Arge |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Aarhus University, Natural Sciences, Department of Computer Science, Department of Computer Science - Center for Massive Data Algoritmics, DK |
| authorships[1].author.id | https://openalex.org/A5063037636 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Mathias Rav |
| authorships[1].countries | DK |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I204337017, https://openalex.org/I4210095128 |
| authorships[1].affiliations[0].raw_affiliation_string | Aarhus University, Natural Sciences, Department of Computer Science, Department of Computer Science - Center for Massive Data Algoritmics, DK |
| authorships[1].institutions[0].id | https://openalex.org/I204337017 |
| authorships[1].institutions[0].ror | https://ror.org/01aj84f44 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I204337017 |
| authorships[1].institutions[0].country_code | DK |
| authorships[1].institutions[0].display_name | Aarhus University |
| authorships[1].institutions[1].id | https://openalex.org/I4210095128 |
| authorships[1].institutions[1].ror | https://ror.org/00qbzpp62 |
| authorships[1].institutions[1].type | facility |
| authorships[1].institutions[1].lineage | https://openalex.org/I4210095128 |
| authorships[1].institutions[1].country_code | DK |
| authorships[1].institutions[1].display_name | Center for Massive Data Algorithmics |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Mathias Rav |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Aarhus University, Natural Sciences, Department of Computer Science, Department of Computer Science - Center for Massive Data Algoritmics, DK |
| authorships[2].author.id | https://openalex.org/A5023366227 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Sarfraz Raza |
| authorships[2].countries | DK |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I204337017, https://openalex.org/I4210095128 |
| authorships[2].affiliations[0].raw_affiliation_string | Aarhus University, Natural Sciences, Department of Computer Science, Department of Computer Science - Center for Massive Data Algoritmics, DK |
| authorships[2].institutions[0].id | https://openalex.org/I204337017 |
| authorships[2].institutions[0].ror | https://ror.org/01aj84f44 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I204337017 |
| authorships[2].institutions[0].country_code | DK |
| authorships[2].institutions[0].display_name | Aarhus University |
| authorships[2].institutions[1].id | https://openalex.org/I4210095128 |
| authorships[2].institutions[1].ror | https://ror.org/00qbzpp62 |
| authorships[2].institutions[1].type | facility |
| authorships[2].institutions[1].lineage | https://openalex.org/I4210095128 |
| authorships[2].institutions[1].country_code | DK |
| authorships[2].institutions[1].display_name | Center for Massive Data Algorithmics |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Sarfraz Raza |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Aarhus University, Natural Sciences, Department of Computer Science, Department of Computer Science - Center for Massive Data Algoritmics, DK |
| authorships[3].author.id | https://openalex.org/A5070817181 |
| authorships[3].author.orcid | |
| authorships[3].author.display_name | Morten Revsbæk |
| authorships[3].affiliations[0].raw_affiliation_string | SCALGO, DK |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Morten Revsbæk |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | SCALGO, DK |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://epubs.siam.org/doi/pdf/10.1137/1.9781611974768.21 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | I/O-Efficient Event Based Depression Flood Risk |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10330 |
| primary_topic.field.id | https://openalex.org/fields/23 |
| primary_topic.field.display_name | Environmental Science |
| primary_topic.score | 0.9775999784469604 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2312 |
| primary_topic.subfield.display_name | Water Science and Technology |
| primary_topic.display_name | Hydrology and Watershed Management Studies |
| related_works | https://openalex.org/W2207790469, https://openalex.org/W4253586140, https://openalex.org/W2042588826, https://openalex.org/W2372141727, https://openalex.org/W2388177796, https://openalex.org/W2286458017, https://openalex.org/W2368170224, https://openalex.org/W2078645328, https://openalex.org/W1973301025, https://openalex.org/W2034462205 |
| cited_by_count | 6 |
| counts_by_year[0].year | 2020 |
| counts_by_year[0].cited_by_count | 2 |
| counts_by_year[1].year | 2019 |
| counts_by_year[1].cited_by_count | 2 |
| counts_by_year[2].year | 2018 |
| counts_by_year[2].cited_by_count | 1 |
| counts_by_year[3].year | 2017 |
| counts_by_year[3].cited_by_count | 1 |
| locations_count | 1 |
| best_oa_location.id | doi:10.1137/1.9781611974768.21 |
| best_oa_location.is_oa | True |
| best_oa_location.source | |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://epubs.siam.org/doi/pdf/10.1137/1.9781611974768.21 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | proceedings-article |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | 2017 Proceedings of the Ninteenth Workshop on Algorithm Engineering and Experiments (ALENEX) |
| best_oa_location.landing_page_url | https://doi.org/10.1137/1.9781611974768.21 |
| primary_location.id | doi:10.1137/1.9781611974768.21 |
| primary_location.is_oa | True |
| primary_location.source | |
| primary_location.license | |
| primary_location.pdf_url | https://epubs.siam.org/doi/pdf/10.1137/1.9781611974768.21 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | proceedings-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | 2017 Proceedings of the Ninteenth Workshop on Algorithm Engineering and Experiments (ALENEX) |
| primary_location.landing_page_url | https://doi.org/10.1137/1.9781611974768.21 |
| publication_date | 2017-01-01 |
| publication_year | 2017 |
| referenced_works_count | 0 |
| abstract_inverted_index.H | 222 |
| abstract_inverted_index.N | 184, 204 |
| abstract_inverted_index.X | 212, 251 |
| abstract_inverted_index.a | 12, 51, 117, 123, 143, 231 |
| abstract_inverted_index.An | 0 |
| abstract_inverted_index.H, | 253 |
| abstract_inverted_index.In | 55, 151 |
| abstract_inverted_index.We | 279 |
| abstract_inverted_index.an | 265 |
| abstract_inverted_index.as | 68 |
| abstract_inverted_index.at | 142 |
| abstract_inverted_index.by | 17 |
| abstract_inverted_index.do | 162 |
| abstract_inverted_index.in | 3, 74, 122, 132, 206, 218, 267, 291 |
| abstract_inverted_index.is | 6, 70, 79, 170, 185, 213, 230 |
| abstract_inverted_index.it | 78, 169 |
| abstract_inverted_index.of | 23, 31, 40, 50, 59, 93, 95, 112, 116, 188, 197, 216, 225, 234, 237, 260 |
| abstract_inverted_index.on | 28, 147, 275 |
| abstract_inverted_index.so | 168 |
| abstract_inverted_index.to | 81, 129, 172, 200, 250 |
| abstract_inverted_index.up | 19 |
| abstract_inverted_index.we | 104, 254 |
| abstract_inverted_index.One | 259 |
| abstract_inverted_index.Our | 177 |
| abstract_inverted_index.The | 21 |
| abstract_inverted_index.and | 14, 35, 64, 100, 192, 202, 221, 252, 284 |
| abstract_inverted_index.are | 120, 194 |
| abstract_inverted_index.can | 157, 263 |
| abstract_inverted_index.due | 128 |
| abstract_inverted_index.for | 109 |
| abstract_inverted_index.how | 8 |
| abstract_inverted_index.is, | 87 |
| abstract_inverted_index.not | 163 |
| abstract_inverted_index.our | 282 |
| abstract_inverted_index.the | 29, 32, 48, 72, 75, 91, 110, 114, 148, 186, 189, 195, 207, 214, 219, 223, 226, 235, 238, 245, 277 |
| abstract_inverted_index.I/Os | 198, 270, 274 |
| abstract_inverted_index.Thus | 77 |
| abstract_inverted_index.also | 255 |
| abstract_inverted_index.data | 60, 96 |
| abstract_inverted_index.even | 41 |
| abstract_inverted_index.have | 280 |
| abstract_inverted_index.main | 53, 62, 98, 178, 246 |
| abstract_inverted_index.only | 136 |
| abstract_inverted_index.rain | 140 |
| abstract_inverted_index.rate | 146 |
| abstract_inverted_index.read | 203 |
| abstract_inverted_index.show | 285 |
| abstract_inverted_index.size | 49, 187, 248 |
| abstract_inverted_index.sort | 201 |
| abstract_inverted_index.such | 24, 56, 174 |
| abstract_inverted_index.that | 86, 89, 119, 161, 286 |
| abstract_inverted_index.they | 287 |
| abstract_inverted_index.this | 102 |
| abstract_inverted_index.uses | 180 |
| abstract_inverted_index.very | 289 |
| abstract_inverted_index.well | 290 |
| abstract_inverted_index.work | 135, 288 |
| abstract_inverted_index.(such | 67 |
| abstract_inverted_index.I/Os, | 182 |
| abstract_inverted_index.Under | 240 |
| abstract_inverted_index.about | 244 |
| abstract_inverted_index.after | 271 |
| abstract_inverted_index.areas | 115, 160 |
| abstract_inverted_index.cases | 57 |
| abstract_inverted_index.data, | 34 |
| abstract_inverted_index.disk) | 69 |
| abstract_inverted_index.event | 127, 266 |
| abstract_inverted_index.falls | 141 |
| abstract_inverted_index.flash | 125, 155 |
| abstract_inverted_index.flood | 126 |
| abstract_inverted_index.flows | 10 |
| abstract_inverted_index.given | 124 |
| abstract_inverted_index.heavy | 165 |
| abstract_inverted_index.local | 153 |
| abstract_inverted_index.model | 173 |
| abstract_inverted_index.often | 46, 71 |
| abstract_inverted_index.paper | 103 |
| abstract_inverted_index.sinks | 217 |
| abstract_inverted_index.small | 43 |
| abstract_inverted_index.these | 261 |
| abstract_inverted_index.using | 272 |
| abstract_inverted_index.water | 9, 130 |
| abstract_inverted_index.where | 139, 183 |
| abstract_inverted_index.which | 229 |
| abstract_inverted_index.across | 11 |
| abstract_inverted_index.affect | 158 |
| abstract_inverted_index.blocks | 94 |
| abstract_inverted_index.entire | 149 |
| abstract_inverted_index.events | 138 |
| abstract_inverted_index.exceed | 47 |
| abstract_inverted_index.fairly | 42 |
| abstract_inverted_index.floods | 16, 156 |
| abstract_inverted_index.handle | 264 |
| abstract_inverted_index.height | 224 |
| abstract_inverted_index.memory | 63, 66, 99, 247 |
| abstract_inverted_index.models | 39 |
| abstract_inverted_index.number | 196, 215 |
| abstract_inverted_index.Scan(N) | 193 |
| abstract_inverted_index.Sort(N) | 191 |
| abstract_inverted_index.between | 61, 97 |
| abstract_inverted_index.creates | 15 |
| abstract_inverted_index.depends | 26 |
| abstract_inverted_index.develop | 82, 105, 256 |
| abstract_inverted_index.disk.In | 101 |
| abstract_inverted_index.events. | 176 |
| abstract_inverted_index.extreme | 154 |
| abstract_inverted_index.filling | 18 |
| abstract_inverted_index.flooded | 121 |
| abstract_inverted_index.memory. | 54 |
| abstract_inverted_index.optimal | 268 |
| abstract_inverted_index.problem | 2, 111 |
| abstract_inverted_index.receive | 164 |
| abstract_inverted_index.regions | 45 |
| abstract_inverted_index.terrain | 4, 13, 33, 38, 118, 220 |
| abstract_inverted_index.uniform | 145 |
| abstract_inverted_index.Previous | 134 |
| abstract_inverted_index.accuracy | 22 |
| abstract_inverted_index.analysis | 5 |
| abstract_inverted_index.compared | 249 |
| abstract_inverted_index.constant | 144 |
| abstract_inverted_index.elements | 205 |
| abstract_inverted_index.external | 65 |
| abstract_inverted_index.minimize | 90 |
| abstract_inverted_index.modeling | 7, 25, 84 |
| abstract_inverted_index.movement | 58, 92 |
| abstract_inverted_index.rainfall | 166 |
| abstract_inverted_index.reality, | 152 |
| abstract_inverted_index.required | 199 |
| abstract_inverted_index.standard | 208 |
| abstract_inverted_index.terrain, | 190 |
| abstract_inverted_index.terrain. | 150, 239, 278 |
| abstract_inverted_index.algorithm | 179 |
| abstract_inverted_index.available | 36 |
| abstract_inverted_index.computing | 113 |
| abstract_inverted_index.directly, | 167 |
| abstract_inverted_index.important | 1, 80, 171 |
| abstract_inverted_index.practice. | 292 |
| abstract_inverted_index.precision | 30 |
| abstract_inverted_index.realistic | 242 |
| abstract_inverted_index.so-called | 227 |
| abstract_inverted_index.two-level | 209 |
| abstract_inverted_index.I/O-model, | 210 |
| abstract_inverted_index.algorithms | 88, 108, 262, 283 |
| abstract_inverted_index.bottleneck | 73 |
| abstract_inverted_index.collecting | 131 |
| abstract_inverted_index.computer's | 52 |
| abstract_inverted_index.considered | 137 |
| abstract_inverted_index.critically | 27 |
| abstract_inverted_index.downstream | 159 |
| abstract_inverted_index.geographic | 44 |
| abstract_inverted_index.algorithms, | 85 |
| abstract_inverted_index.assumptions | 243 |
| abstract_inverted_index.depressions | 236 |
| abstract_inverted_index.implemented | 281 |
| abstract_inverted_index.merge-tree, | 228 |
| abstract_inverted_index.non-uniform | 175 |
| abstract_inverted_index.practically | 106, 241 |
| abstract_inverted_index.computation. | 76 |
| abstract_inverted_index.depressions. | 20, 133 |
| abstract_inverted_index.hierarchical | 232 |
| abstract_inverted_index.풪(Scan(N)) | 269 |
| abstract_inverted_index.풪(Sort(N)) | 257, 273 |
| abstract_inverted_index.I/O-efficient | 83, 107 |
| abstract_inverted_index.preprocessing | 276 |
| abstract_inverted_index.respectively, | 211 |
| abstract_inverted_index.representation | 233 |
| abstract_inverted_index.I/O-algorithms. | 258 |
| abstract_inverted_index.high-resolution | 37 |
| abstract_inverted_index.풪(Sort(N)+Scan(H·X)) | 181 |
| cited_by_percentile_year.max | 96 |
| cited_by_percentile_year.min | 90 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 4 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/6 |
| sustainable_development_goals[0].score | 0.6499999761581421 |
| sustainable_development_goals[0].display_name | Clean water and sanitation |
| citation_normalized_percentile.value | 0.77376511 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |