IoT and Deep Learning on Sensor Data Article Swipe
YOU?
·
· 2021
· Open Access
·
· DOI: https://doi.org/10.5281/zenodo.5651178
Internet of things (IoT) combined with machine learning algorithms has several applications in various fields. Extensive research and projects are available in Intrusion detection systems (IDS). This paper focuses on collecting data from various sensors and storing them efficiently in various database systems and applying machine learning algorithms to extract useful information from raw sensor data. We propose a 3-tier system that consists of sensor nodes, a sensor database, combined with machine learning algorithm for predicting the activity performed by the human at that point in time. The dataset used to train the Machine learning algorithm has been collected and stored in a NoSQL database which is non-relational and easily scalable. This work compares the reliability and accuracy of the existing algorithms in the field of IoT in sensor data.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.5281/zenodo.5651178
- OA Status
- green
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4225747988
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4225747988Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.5281/zenodo.5651178Digital Object Identifier
- Title
-
IoT and Deep Learning on Sensor DataWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2021Year of publication
- Publication date
-
2021-11-06Full publication date if available
- Authors
-
Abdul Quadir, Siva AN, Arun Kumar SivaramanList of authors in order
- Landing page
-
https://doi.org/10.5281/zenodo.5651178Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.5281/zenodo.5651178Direct OA link when available
- Concepts
-
Deep learning, Computer science, Internet of Things, Wireless sensor network, Artificial intelligence, Data science, Embedded system, Computer networkTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4225747988 |
|---|---|
| doi | https://doi.org/10.5281/zenodo.5651178 |
| ids.doi | https://doi.org/10.5281/zenodo.5651178 |
| ids.openalex | https://openalex.org/W4225747988 |
| fwci | 0.0 |
| type | article |
| title | IoT and Deep Learning on Sensor Data |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11512 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.5834000110626221 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Anomaly Detection Techniques and Applications |
| topics[1].id | https://openalex.org/T10320 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.5076000094413757 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | Neural Networks and Applications |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C108583219 |
| concepts[0].level | 2 |
| concepts[0].score | 0.6083593368530273 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q197536 |
| concepts[0].display_name | Deep learning |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.5376618504524231 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C81860439 |
| concepts[2].level | 2 |
| concepts[2].score | 0.5072845816612244 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q251212 |
| concepts[2].display_name | Internet of Things |
| concepts[3].id | https://openalex.org/C24590314 |
| concepts[3].level | 2 |
| concepts[3].score | 0.4756590723991394 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q336038 |
| concepts[3].display_name | Wireless sensor network |
| concepts[4].id | https://openalex.org/C154945302 |
| concepts[4].level | 1 |
| concepts[4].score | 0.43460917472839355 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[4].display_name | Artificial intelligence |
| concepts[5].id | https://openalex.org/C2522767166 |
| concepts[5].level | 1 |
| concepts[5].score | 0.4188682436943054 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q2374463 |
| concepts[5].display_name | Data science |
| concepts[6].id | https://openalex.org/C149635348 |
| concepts[6].level | 1 |
| concepts[6].score | 0.18939250707626343 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q193040 |
| concepts[6].display_name | Embedded system |
| concepts[7].id | https://openalex.org/C31258907 |
| concepts[7].level | 1 |
| concepts[7].score | 0.15316098928451538 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q1301371 |
| concepts[7].display_name | Computer network |
| keywords[0].id | https://openalex.org/keywords/deep-learning |
| keywords[0].score | 0.6083593368530273 |
| keywords[0].display_name | Deep learning |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.5376618504524231 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/internet-of-things |
| keywords[2].score | 0.5072845816612244 |
| keywords[2].display_name | Internet of Things |
| keywords[3].id | https://openalex.org/keywords/wireless-sensor-network |
| keywords[3].score | 0.4756590723991394 |
| keywords[3].display_name | Wireless sensor network |
| keywords[4].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[4].score | 0.43460917472839355 |
| keywords[4].display_name | Artificial intelligence |
| keywords[5].id | https://openalex.org/keywords/data-science |
| keywords[5].score | 0.4188682436943054 |
| keywords[5].display_name | Data science |
| keywords[6].id | https://openalex.org/keywords/embedded-system |
| keywords[6].score | 0.18939250707626343 |
| keywords[6].display_name | Embedded system |
| keywords[7].id | https://openalex.org/keywords/computer-network |
| keywords[7].score | 0.15316098928451538 |
| keywords[7].display_name | Computer network |
| language | en |
| locations[0].id | doi:10.5281/zenodo.5651178 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400562 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Zenodo (CERN European Organization for Nuclear Research) |
| locations[0].source.host_organization | https://openalex.org/I67311998 |
| locations[0].source.host_organization_name | European Organization for Nuclear Research |
| locations[0].source.host_organization_lineage | https://openalex.org/I67311998 |
| locations[0].license | cc-by |
| locations[0].pdf_url | |
| locations[0].version | |
| locations[0].raw_type | article-journal |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | False |
| locations[0].is_published | |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | https://doi.org/10.5281/zenodo.5651178 |
| indexed_in | datacite |
| authorships[0].author.id | https://openalex.org/A5057503238 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-0569-9960 |
| authorships[0].author.display_name | Abdul Quadir |
| authorships[0].countries | IN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I876193797 |
| authorships[0].affiliations[0].raw_affiliation_string | Vellore Institute of Technology (VIT), Chennai, India |
| authorships[0].institutions[0].id | https://openalex.org/I876193797 |
| authorships[0].institutions[0].ror | https://ror.org/00qzypv28 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I876193797 |
| authorships[0].institutions[0].country_code | IN |
| authorships[0].institutions[0].display_name | Vellore Institute of Technology University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Abdul Quadir Md |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Vellore Institute of Technology (VIT), Chennai, India |
| authorships[1].author.id | https://openalex.org/A5069492567 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Siva AN |
| authorships[1].countries | IN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I876193797 |
| authorships[1].affiliations[0].raw_affiliation_string | Vellore Institute of Technology (VIT), Chennai, India |
| authorships[1].institutions[0].id | https://openalex.org/I876193797 |
| authorships[1].institutions[0].ror | https://ror.org/00qzypv28 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I876193797 |
| authorships[1].institutions[0].country_code | IN |
| authorships[1].institutions[0].display_name | Vellore Institute of Technology University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Siva AN |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Vellore Institute of Technology (VIT), Chennai, India |
| authorships[2].author.id | https://openalex.org/A5021370867 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-0514-484X |
| authorships[2].author.display_name | Arun Kumar Sivaraman |
| authorships[2].countries | IN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I876193797 |
| authorships[2].affiliations[0].raw_affiliation_string | Vellore Institute of Technology (VIT), Chennai, India |
| authorships[2].institutions[0].id | https://openalex.org/I876193797 |
| authorships[2].institutions[0].ror | https://ror.org/00qzypv28 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I876193797 |
| authorships[2].institutions[0].country_code | IN |
| authorships[2].institutions[0].display_name | Vellore Institute of Technology University |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Arun Kumar Sivaraman |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Vellore Institute of Technology (VIT), Chennai, India |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.5281/zenodo.5651178 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | IoT and Deep Learning on Sensor Data |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T11512 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.5834000110626221 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Anomaly Detection Techniques and Applications |
| related_works | https://openalex.org/W2731899572, https://openalex.org/W3215138031, https://openalex.org/W3009238340, https://openalex.org/W2939353110, https://openalex.org/W4321369474, https://openalex.org/W4360585206, https://openalex.org/W4285208911, https://openalex.org/W3082895349, https://openalex.org/W4213079790, https://openalex.org/W2248239756 |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.5281/zenodo.5651178 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400562 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Zenodo (CERN European Organization for Nuclear Research) |
| best_oa_location.source.host_organization | https://openalex.org/I67311998 |
| best_oa_location.source.host_organization_name | European Organization for Nuclear Research |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I67311998 |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | |
| best_oa_location.raw_type | article-journal |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | https://doi.org/10.5281/zenodo.5651178 |
| primary_location.id | doi:10.5281/zenodo.5651178 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400562 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Zenodo (CERN European Organization for Nuclear Research) |
| primary_location.source.host_organization | https://openalex.org/I67311998 |
| primary_location.source.host_organization_name | European Organization for Nuclear Research |
| primary_location.source.host_organization_lineage | https://openalex.org/I67311998 |
| primary_location.license | cc-by |
| primary_location.pdf_url | |
| primary_location.version | |
| primary_location.raw_type | article-journal |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | https://doi.org/10.5281/zenodo.5651178 |
| publication_date | 2021-11-06 |
| publication_year | 2021 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 58, 66, 102 |
| abstract_inverted_index.We | 56 |
| abstract_inverted_index.at | 82 |
| abstract_inverted_index.by | 79 |
| abstract_inverted_index.in | 12, 21, 39, 85, 101, 122, 127 |
| abstract_inverted_index.is | 106 |
| abstract_inverted_index.of | 1, 63, 118, 125 |
| abstract_inverted_index.on | 29 |
| abstract_inverted_index.to | 48, 90 |
| abstract_inverted_index.IoT | 126 |
| abstract_inverted_index.The | 87 |
| abstract_inverted_index.and | 17, 35, 43, 99, 108, 116 |
| abstract_inverted_index.are | 19 |
| abstract_inverted_index.for | 74 |
| abstract_inverted_index.has | 9, 96 |
| abstract_inverted_index.raw | 53 |
| abstract_inverted_index.the | 76, 80, 92, 114, 119, 123 |
| abstract_inverted_index.This | 26, 111 |
| abstract_inverted_index.been | 97 |
| abstract_inverted_index.data | 31 |
| abstract_inverted_index.from | 32, 52 |
| abstract_inverted_index.that | 61, 83 |
| abstract_inverted_index.them | 37 |
| abstract_inverted_index.used | 89 |
| abstract_inverted_index.with | 5, 70 |
| abstract_inverted_index.work | 112 |
| abstract_inverted_index.(IoT) | 3 |
| abstract_inverted_index.NoSQL | 103 |
| abstract_inverted_index.data. | 55, 129 |
| abstract_inverted_index.field | 124 |
| abstract_inverted_index.human | 81 |
| abstract_inverted_index.paper | 27 |
| abstract_inverted_index.point | 84 |
| abstract_inverted_index.time. | 86 |
| abstract_inverted_index.train | 91 |
| abstract_inverted_index.which | 105 |
| abstract_inverted_index.(IDS). | 25 |
| abstract_inverted_index.3-tier | 59 |
| abstract_inverted_index.easily | 109 |
| abstract_inverted_index.nodes, | 65 |
| abstract_inverted_index.sensor | 54, 64, 67, 128 |
| abstract_inverted_index.stored | 100 |
| abstract_inverted_index.system | 60 |
| abstract_inverted_index.things | 2 |
| abstract_inverted_index.useful | 50 |
| abstract_inverted_index.Machine | 93 |
| abstract_inverted_index.dataset | 88 |
| abstract_inverted_index.extract | 49 |
| abstract_inverted_index.fields. | 14 |
| abstract_inverted_index.focuses | 28 |
| abstract_inverted_index.machine | 6, 45, 71 |
| abstract_inverted_index.propose | 57 |
| abstract_inverted_index.sensors | 34 |
| abstract_inverted_index.several | 10 |
| abstract_inverted_index.storing | 36 |
| abstract_inverted_index.systems | 24, 42 |
| abstract_inverted_index.various | 13, 33, 40 |
| abstract_inverted_index.Internet | 0 |
| abstract_inverted_index.accuracy | 117 |
| abstract_inverted_index.activity | 77 |
| abstract_inverted_index.applying | 44 |
| abstract_inverted_index.combined | 4, 69 |
| abstract_inverted_index.compares | 113 |
| abstract_inverted_index.consists | 62 |
| abstract_inverted_index.database | 41, 104 |
| abstract_inverted_index.existing | 120 |
| abstract_inverted_index.learning | 7, 46, 72, 94 |
| abstract_inverted_index.projects | 18 |
| abstract_inverted_index.research | 16 |
| abstract_inverted_index.Extensive | 15 |
| abstract_inverted_index.Intrusion | 22 |
| abstract_inverted_index.algorithm | 73, 95 |
| abstract_inverted_index.available | 20 |
| abstract_inverted_index.collected | 98 |
| abstract_inverted_index.database, | 68 |
| abstract_inverted_index.detection | 23 |
| abstract_inverted_index.performed | 78 |
| abstract_inverted_index.scalable. | 110 |
| abstract_inverted_index.algorithms | 8, 47, 121 |
| abstract_inverted_index.collecting | 30 |
| abstract_inverted_index.predicting | 75 |
| abstract_inverted_index.efficiently | 38 |
| abstract_inverted_index.information | 51 |
| abstract_inverted_index.reliability | 115 |
| abstract_inverted_index.applications | 11 |
| abstract_inverted_index.non-relational | 107 |
| cited_by_percentile_year | |
| countries_distinct_count | 1 |
| institutions_distinct_count | 3 |
| citation_normalized_percentile.value | 0.21136529 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |