IoT and Interpretable Machine Learning Based Framework for Disease Prediction in Pearl Millet Article Swipe
YOU?
·
· 2021
· Open Access
·
· DOI: https://doi.org/10.3390/s21165386
Decrease in crop yield and degradation in product quality due to plant diseases such as rust and blast in pearl millet is the cause of concern for farmers and the agriculture industry. The stipulation of expert advice for disease identification is also a challenge for the farmers. The traditional techniques adopted for plant disease detection require more human intervention, are unhandy for farmers, and have a high cost of deployment, operation, and maintenance. Therefore, there is a requirement for automating plant disease detection and classification. Deep learning and IoT-based solutions are proposed in the literature for plant disease detection and classification. However, there is a huge scope to develop low-cost systems by integrating these techniques for data collection, feature visualization, and disease detection. This research aims to develop the ‘Automatic and Intelligent Data Collector and Classifier’ framework by integrating IoT and deep learning. The framework automatically collects the imagery and parametric data from the pearl millet farmland at ICAR, Mysore, India. It automatically sends the collected data to the cloud server and the Raspberry Pi. The ‘Custom-Net’ model designed as a part of this research is deployed on the cloud server. It collaborates with the Raspberry Pi to precisely predict the blast and rust diseases in pearl millet. Moreover, the Grad-CAM is employed to visualize the features extracted by the ‘Custom-Net’. Furthermore, the impact of transfer learning on the ‘Custom-Net’ and state-of-the-art models viz. Inception ResNet-V2, Inception-V3, ResNet-50, VGG-16, and VGG-19 is shown in this manuscript. Based on the experimental results, and features visualization by Grad-CAM, it is observed that the ‘Custom-Net’ extracts the relevant features and the transfer learning improves the extraction of relevant features. Additionally, the ‘Custom-Net’ model reports a classification accuracy of 98.78% that is equivalent to state-of-the-art models viz. Inception ResNet-V2, Inception-V3, ResNet-50, VGG-16, and VGG-19. Although the classification of ‘Custom-Net’ is comparable to state-of-the-art models, it is effective in reducing the training time by 86.67%. It makes the model more suitable for automating disease detection. This proves that the proposed model is effective in providing a low-cost and handy tool for farmers to improve crop yield and product quality.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.3390/s21165386
- https://www.mdpi.com/1424-8220/21/16/5386/pdf?version=1628523462
- OA Status
- gold
- Cited By
- 170
- References
- 60
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W3190789542
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W3190789542Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.3390/s21165386Digital Object Identifier
- Title
-
IoT and Interpretable Machine Learning Based Framework for Disease Prediction in Pearl MilletWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2021Year of publication
- Publication date
-
2021-08-09Full publication date if available
- Authors
-
Nidhi Kundu, Geeta Rani, Vijaypal Singh Dhaka, Kalpit Gupta, S. Chandra Nayak, Sahil Verma, Muhammad Fazal Ijaz, Marcin WoźniakList of authors in order
- Landing page
-
https://doi.org/10.3390/s21165386Publisher landing page
- PDF URL
-
https://www.mdpi.com/1424-8220/21/16/5386/pdf?version=1628523462Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://www.mdpi.com/1424-8220/21/16/5386/pdf?version=1628523462Direct OA link when available
- Concepts
-
Plant disease, Cloud computing, Computer science, Artificial intelligence, Machine learning, Deep learning, Classifier (UML), Data mining, Database, Operating system, Biotechnology, BiologyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
170Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 19, 2024: 37, 2023: 58, 2022: 49, 2021: 7Per-year citation counts (last 5 years)
- References (count)
-
60Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W3190789542 |
|---|---|
| doi | https://doi.org/10.3390/s21165386 |
| ids.doi | https://doi.org/10.3390/s21165386 |
| ids.mag | 3190789542 |
| ids.openalex | https://openalex.org/W3190789542 |
| fwci | 23.61900861 |
| type | article |
| title | IoT and Interpretable Machine Learning Based Framework for Disease Prediction in Pearl Millet |
| biblio.issue | 16 |
| biblio.volume | 21 |
| biblio.last_page | 5386 |
| biblio.first_page | 5386 |
| topics[0].id | https://openalex.org/T10616 |
| topics[0].field.id | https://openalex.org/fields/11 |
| topics[0].field.display_name | Agricultural and Biological Sciences |
| topics[0].score | 0.9998000264167786 |
| topics[0].domain.id | https://openalex.org/domains/1 |
| topics[0].domain.display_name | Life Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1110 |
| topics[0].subfield.display_name | Plant Science |
| topics[0].display_name | Smart Agriculture and AI |
| topics[1].id | https://openalex.org/T12894 |
| topics[1].field.id | https://openalex.org/fields/11 |
| topics[1].field.display_name | Agricultural and Biological Sciences |
| topics[1].score | 0.9753999710083008 |
| topics[1].domain.id | https://openalex.org/domains/1 |
| topics[1].domain.display_name | Life Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1110 |
| topics[1].subfield.display_name | Plant Science |
| topics[1].display_name | Date Palm Research Studies |
| topics[2].id | https://openalex.org/T10640 |
| topics[2].field.id | https://openalex.org/fields/16 |
| topics[2].field.display_name | Chemistry |
| topics[2].score | 0.9747999906539917 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1602 |
| topics[2].subfield.display_name | Analytical Chemistry |
| topics[2].display_name | Spectroscopy and Chemometric Analyses |
| is_xpac | False |
| apc_list.value | 2400 |
| apc_list.currency | CHF |
| apc_list.value_usd | 2598 |
| apc_paid.value | 2400 |
| apc_paid.currency | CHF |
| apc_paid.value_usd | 2598 |
| concepts[0].id | https://openalex.org/C3019235130 |
| concepts[0].level | 2 |
| concepts[0].score | 0.611508846282959 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q188956 |
| concepts[0].display_name | Plant disease |
| concepts[1].id | https://openalex.org/C79974875 |
| concepts[1].level | 2 |
| concepts[1].score | 0.5560705065727234 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q483639 |
| concepts[1].display_name | Cloud computing |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.5221643447875977 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| concepts[3].id | https://openalex.org/C154945302 |
| concepts[3].level | 1 |
| concepts[3].score | 0.5151633024215698 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[3].display_name | Artificial intelligence |
| concepts[4].id | https://openalex.org/C119857082 |
| concepts[4].level | 1 |
| concepts[4].score | 0.5002069473266602 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[4].display_name | Machine learning |
| concepts[5].id | https://openalex.org/C108583219 |
| concepts[5].level | 2 |
| concepts[5].score | 0.42605921626091003 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q197536 |
| concepts[5].display_name | Deep learning |
| concepts[6].id | https://openalex.org/C95623464 |
| concepts[6].level | 2 |
| concepts[6].score | 0.41270604729652405 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q1096149 |
| concepts[6].display_name | Classifier (UML) |
| concepts[7].id | https://openalex.org/C124101348 |
| concepts[7].level | 1 |
| concepts[7].score | 0.3441805839538574 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q172491 |
| concepts[7].display_name | Data mining |
| concepts[8].id | https://openalex.org/C77088390 |
| concepts[8].level | 1 |
| concepts[8].score | 0.33810955286026 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q8513 |
| concepts[8].display_name | Database |
| concepts[9].id | https://openalex.org/C111919701 |
| concepts[9].level | 1 |
| concepts[9].score | 0.13743337988853455 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q9135 |
| concepts[9].display_name | Operating system |
| concepts[10].id | https://openalex.org/C150903083 |
| concepts[10].level | 1 |
| concepts[10].score | 0.09098759293556213 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q7108 |
| concepts[10].display_name | Biotechnology |
| concepts[11].id | https://openalex.org/C86803240 |
| concepts[11].level | 0 |
| concepts[11].score | 0.0 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q420 |
| concepts[11].display_name | Biology |
| keywords[0].id | https://openalex.org/keywords/plant-disease |
| keywords[0].score | 0.611508846282959 |
| keywords[0].display_name | Plant disease |
| keywords[1].id | https://openalex.org/keywords/cloud-computing |
| keywords[1].score | 0.5560705065727234 |
| keywords[1].display_name | Cloud computing |
| keywords[2].id | https://openalex.org/keywords/computer-science |
| keywords[2].score | 0.5221643447875977 |
| keywords[2].display_name | Computer science |
| keywords[3].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[3].score | 0.5151633024215698 |
| keywords[3].display_name | Artificial intelligence |
| keywords[4].id | https://openalex.org/keywords/machine-learning |
| keywords[4].score | 0.5002069473266602 |
| keywords[4].display_name | Machine learning |
| keywords[5].id | https://openalex.org/keywords/deep-learning |
| keywords[5].score | 0.42605921626091003 |
| keywords[5].display_name | Deep learning |
| keywords[6].id | https://openalex.org/keywords/classifier |
| keywords[6].score | 0.41270604729652405 |
| keywords[6].display_name | Classifier (UML) |
| keywords[7].id | https://openalex.org/keywords/data-mining |
| keywords[7].score | 0.3441805839538574 |
| keywords[7].display_name | Data mining |
| keywords[8].id | https://openalex.org/keywords/database |
| keywords[8].score | 0.33810955286026 |
| keywords[8].display_name | Database |
| keywords[9].id | https://openalex.org/keywords/operating-system |
| keywords[9].score | 0.13743337988853455 |
| keywords[9].display_name | Operating system |
| keywords[10].id | https://openalex.org/keywords/biotechnology |
| keywords[10].score | 0.09098759293556213 |
| keywords[10].display_name | Biotechnology |
| language | en |
| locations[0].id | doi:10.3390/s21165386 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S101949793 |
| locations[0].source.issn | 1424-8220 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 1424-8220 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Sensors |
| locations[0].source.host_organization | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://www.mdpi.com/1424-8220/21/16/5386/pdf?version=1628523462 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Sensors |
| locations[0].landing_page_url | https://doi.org/10.3390/s21165386 |
| locations[1].id | pmh:oai:doaj.org/article:2e1a899985554190b4db2c5e406d4028 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].license | cc-by-sa |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | https://openalex.org/licenses/cc-by-sa |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | Sensors, Vol 21, Iss 16, p 5386 (2021) |
| locations[1].landing_page_url | https://doaj.org/article/2e1a899985554190b4db2c5e406d4028 |
| locations[2].id | pmh:oai:mdpi.com:/1424-8220/21/16/5386/ |
| locations[2].is_oa | True |
| locations[2].source.id | https://openalex.org/S4306400947 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | True |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | MDPI (MDPI AG) |
| locations[2].source.host_organization | https://openalex.org/I4210097602 |
| locations[2].source.host_organization_name | Multidisciplinary Digital Publishing Institute (Switzerland) |
| locations[2].source.host_organization_lineage | https://openalex.org/I4210097602 |
| locations[2].license | cc-by |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | Text |
| locations[2].license_id | https://openalex.org/licenses/cc-by |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | Sensors; Volume 21; Issue 16; Pages: 5386 |
| locations[2].landing_page_url | https://dx.doi.org/10.3390/s21165386 |
| locations[3].id | pmh:oai:pubmedcentral.nih.gov:8397940 |
| locations[3].is_oa | True |
| locations[3].source.id | https://openalex.org/S2764455111 |
| locations[3].source.issn | |
| locations[3].source.type | repository |
| locations[3].source.is_oa | False |
| locations[3].source.issn_l | |
| locations[3].source.is_core | False |
| locations[3].source.is_in_doaj | False |
| locations[3].source.display_name | PubMed Central |
| locations[3].source.host_organization | https://openalex.org/I1299303238 |
| locations[3].source.host_organization_name | National Institutes of Health |
| locations[3].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[3].license | other-oa |
| locations[3].pdf_url | |
| locations[3].version | submittedVersion |
| locations[3].raw_type | Text |
| locations[3].license_id | https://openalex.org/licenses/other-oa |
| locations[3].is_accepted | False |
| locations[3].is_published | False |
| locations[3].raw_source_name | Sensors (Basel) |
| locations[3].landing_page_url | https://www.ncbi.nlm.nih.gov/pmc/articles/8397940 |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5031028409 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Nidhi Kundu |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I73779912 |
| authorships[0].affiliations[0].raw_affiliation_string | Department of Computer and Communication Engineering, Manipal University Jaipur, Jaipur 303007, India |
| authorships[0].institutions[0].id | https://openalex.org/I73779912 |
| authorships[0].institutions[0].ror | https://ror.org/040h76494 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I73779912 |
| authorships[0].institutions[0].country_code | |
| authorships[0].institutions[0].display_name | Manipal University Jaipur |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Nidhi Kundu |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Department of Computer and Communication Engineering, Manipal University Jaipur, Jaipur 303007, India |
| authorships[1].author.id | https://openalex.org/A5057070686 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-4513-2109 |
| authorships[1].author.display_name | Geeta Rani |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I73779912 |
| authorships[1].affiliations[0].raw_affiliation_string | Department of Computer and Communication Engineering, Manipal University Jaipur, Jaipur 303007, India |
| authorships[1].institutions[0].id | https://openalex.org/I73779912 |
| authorships[1].institutions[0].ror | https://ror.org/040h76494 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I73779912 |
| authorships[1].institutions[0].country_code | |
| authorships[1].institutions[0].display_name | Manipal University Jaipur |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Geeta Rani |
| authorships[1].is_corresponding | True |
| authorships[1].raw_affiliation_strings | Department of Computer and Communication Engineering, Manipal University Jaipur, Jaipur 303007, India |
| authorships[2].author.id | https://openalex.org/A5108541054 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Vijaypal Singh Dhaka |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I73779912 |
| authorships[2].affiliations[0].raw_affiliation_string | Department of Computer and Communication Engineering, Manipal University Jaipur, Jaipur 303007, India |
| authorships[2].institutions[0].id | https://openalex.org/I73779912 |
| authorships[2].institutions[0].ror | https://ror.org/040h76494 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I73779912 |
| authorships[2].institutions[0].country_code | |
| authorships[2].institutions[0].display_name | Manipal University Jaipur |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Vijaypal Singh Dhaka |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Department of Computer and Communication Engineering, Manipal University Jaipur, Jaipur 303007, India |
| authorships[3].author.id | https://openalex.org/A5070945521 |
| authorships[3].author.orcid | |
| authorships[3].author.display_name | Kalpit Gupta |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I73779912 |
| authorships[3].affiliations[0].raw_affiliation_string | Department of Computer and Communication Engineering, Manipal University Jaipur, Jaipur 303007, India |
| authorships[3].institutions[0].id | https://openalex.org/I73779912 |
| authorships[3].institutions[0].ror | https://ror.org/040h76494 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I73779912 |
| authorships[3].institutions[0].country_code | |
| authorships[3].institutions[0].display_name | Manipal University Jaipur |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Kalpit Gupta |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Department of Computer and Communication Engineering, Manipal University Jaipur, Jaipur 303007, India |
| authorships[4].author.id | https://openalex.org/A5113957903 |
| authorships[4].author.orcid | |
| authorships[4].author.display_name | S. Chandra Nayak |
| authorships[4].countries | IN |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I204743663 |
| authorships[4].affiliations[0].raw_affiliation_string | ICAR DOS in Biotechnology, University of Mysore Manasagangotri, Mysore 570005, India |
| authorships[4].institutions[0].id | https://openalex.org/I204743663 |
| authorships[4].institutions[0].ror | https://ror.org/012bxv356 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I204743663 |
| authorships[4].institutions[0].country_code | IN |
| authorships[4].institutions[0].display_name | University of Mysore |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Siddaiah Chandra Nayak |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | ICAR DOS in Biotechnology, University of Mysore Manasagangotri, Mysore 570005, India |
| authorships[5].author.id | https://openalex.org/A5000043933 |
| authorships[5].author.orcid | https://orcid.org/0000-0003-3136-4029 |
| authorships[5].author.display_name | Sahil Verma |
| authorships[5].countries | IN |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I101407740 |
| authorships[5].affiliations[0].raw_affiliation_string | Department of Computer Science and Engineering, Chandigarh University, Mohali 140413, India |
| authorships[5].institutions[0].id | https://openalex.org/I101407740 |
| authorships[5].institutions[0].ror | https://ror.org/05t4pvx35 |
| authorships[5].institutions[0].type | education |
| authorships[5].institutions[0].lineage | https://openalex.org/I101407740 |
| authorships[5].institutions[0].country_code | IN |
| authorships[5].institutions[0].display_name | Chandigarh University |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Sahil Verma |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | Department of Computer Science and Engineering, Chandigarh University, Mohali 140413, India |
| authorships[6].author.id | https://openalex.org/A5002900384 |
| authorships[6].author.orcid | https://orcid.org/0000-0001-5206-272X |
| authorships[6].author.display_name | Muhammad Fazal Ijaz |
| authorships[6].countries | KR |
| authorships[6].affiliations[0].institution_ids | https://openalex.org/I28777354 |
| authorships[6].affiliations[0].raw_affiliation_string | Department of Intelligent Mechatronics Engineering, Sejong University, Seoul 05006, Korea |
| authorships[6].institutions[0].id | https://openalex.org/I28777354 |
| authorships[6].institutions[0].ror | https://ror.org/00aft1q37 |
| authorships[6].institutions[0].type | education |
| authorships[6].institutions[0].lineage | https://openalex.org/I28777354 |
| authorships[6].institutions[0].country_code | KR |
| authorships[6].institutions[0].display_name | Sejong University |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Muhammad Fazal Ijaz |
| authorships[6].is_corresponding | True |
| authorships[6].raw_affiliation_strings | Department of Intelligent Mechatronics Engineering, Sejong University, Seoul 05006, Korea |
| authorships[7].author.id | https://openalex.org/A5016267473 |
| authorships[7].author.orcid | https://orcid.org/0000-0002-9073-5347 |
| authorships[7].author.display_name | Marcin Woźniak |
| authorships[7].countries | PL |
| authorships[7].affiliations[0].institution_ids | https://openalex.org/I119004910 |
| authorships[7].affiliations[0].raw_affiliation_string | Faculty of Applied Mathematics, Silesian University of Technology, 44-100 Gliwice, Poland |
| authorships[7].institutions[0].id | https://openalex.org/I119004910 |
| authorships[7].institutions[0].ror | https://ror.org/02dyjk442 |
| authorships[7].institutions[0].type | education |
| authorships[7].institutions[0].lineage | https://openalex.org/I119004910 |
| authorships[7].institutions[0].country_code | PL |
| authorships[7].institutions[0].display_name | Silesian University of Technology |
| authorships[7].author_position | last |
| authorships[7].raw_author_name | Marcin Woźniak |
| authorships[7].is_corresponding | False |
| authorships[7].raw_affiliation_strings | Faculty of Applied Mathematics, Silesian University of Technology, 44-100 Gliwice, Poland |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.mdpi.com/1424-8220/21/16/5386/pdf?version=1628523462 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2021-08-16T00:00:00 |
| display_name | IoT and Interpretable Machine Learning Based Framework for Disease Prediction in Pearl Millet |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10616 |
| primary_topic.field.id | https://openalex.org/fields/11 |
| primary_topic.field.display_name | Agricultural and Biological Sciences |
| primary_topic.score | 0.9998000264167786 |
| primary_topic.domain.id | https://openalex.org/domains/1 |
| primary_topic.domain.display_name | Life Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1110 |
| primary_topic.subfield.display_name | Plant Science |
| primary_topic.display_name | Smart Agriculture and AI |
| related_works | https://openalex.org/W4244478748, https://openalex.org/W3150465815, https://openalex.org/W4223488648, https://openalex.org/W2134969820, https://openalex.org/W2251605416, https://openalex.org/W1997222214, https://openalex.org/W2560439919, https://openalex.org/W4389340727, https://openalex.org/W2802581102, https://openalex.org/W4205786897 |
| cited_by_count | 170 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 19 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 37 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 58 |
| counts_by_year[3].year | 2022 |
| counts_by_year[3].cited_by_count | 49 |
| counts_by_year[4].year | 2021 |
| counts_by_year[4].cited_by_count | 7 |
| locations_count | 4 |
| best_oa_location.id | doi:10.3390/s21165386 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S101949793 |
| best_oa_location.source.issn | 1424-8220 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 1424-8220 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Sensors |
| best_oa_location.source.host_organization | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://www.mdpi.com/1424-8220/21/16/5386/pdf?version=1628523462 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Sensors |
| best_oa_location.landing_page_url | https://doi.org/10.3390/s21165386 |
| primary_location.id | doi:10.3390/s21165386 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S101949793 |
| primary_location.source.issn | 1424-8220 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 1424-8220 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Sensors |
| primary_location.source.host_organization | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://www.mdpi.com/1424-8220/21/16/5386/pdf?version=1628523462 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Sensors |
| primary_location.landing_page_url | https://doi.org/10.3390/s21165386 |
| publication_date | 2021-08-09 |
| publication_year | 2021 |
| referenced_works | https://openalex.org/W2303876378, https://openalex.org/W2511689025, https://openalex.org/W2595801437, https://openalex.org/W2015313605, https://openalex.org/W6749868808, https://openalex.org/W3109724004, https://openalex.org/W3013354695, https://openalex.org/W2999545566, https://openalex.org/W3088858306, https://openalex.org/W3153581565, https://openalex.org/W3019678571, https://openalex.org/W6769472054, https://openalex.org/W2520364485, https://openalex.org/W2473156356, https://openalex.org/W3122399332, https://openalex.org/W2515751705, https://openalex.org/W2165698076, https://openalex.org/W3034261299, https://openalex.org/W206514730, https://openalex.org/W2750970844, https://openalex.org/W6773008470, https://openalex.org/W2967937669, https://openalex.org/W2797392882, https://openalex.org/W3040792958, https://openalex.org/W2767713344, https://openalex.org/W2927613875, https://openalex.org/W2969933026, https://openalex.org/W2735962203, https://openalex.org/W2911433502, https://openalex.org/W2944599236, https://openalex.org/W2966432859, https://openalex.org/W6674914833, https://openalex.org/W2026430219, https://openalex.org/W2183341477, https://openalex.org/W2963446712, https://openalex.org/W2789255992, https://openalex.org/W2520102481, https://openalex.org/W2954996726, https://openalex.org/W2978760586, https://openalex.org/W2921403460, https://openalex.org/W6703966776, https://openalex.org/W3032482815, https://openalex.org/W2883113516, https://openalex.org/W3087879900, https://openalex.org/W2967678982, https://openalex.org/W6736512164, https://openalex.org/W6769958046, https://openalex.org/W2158698691, https://openalex.org/W3183773668, https://openalex.org/W2097117768, https://openalex.org/W2340627689, https://openalex.org/W2796318158, https://openalex.org/W3100931193, https://openalex.org/W1686810756, https://openalex.org/W2981758061, https://openalex.org/W2999933073, https://openalex.org/W3176923149, https://openalex.org/W2604194943, https://openalex.org/W2985886590, https://openalex.org/W2262410668 |
| referenced_works_count | 60 |
| abstract_inverted_index.a | 42, 65, 76, 104, 180, 281, 340 |
| abstract_inverted_index.It | 161, 191, 320 |
| abstract_inverted_index.Pi | 196 |
| abstract_inverted_index.as | 14, 179 |
| abstract_inverted_index.at | 157 |
| abstract_inverted_index.by | 111, 137, 218, 254, 318 |
| abstract_inverted_index.in | 1, 6, 18, 92, 205, 243, 313, 338 |
| abstract_inverted_index.is | 21, 40, 75, 103, 185, 211, 241, 257, 287, 305, 311, 336 |
| abstract_inverted_index.it | 256, 310 |
| abstract_inverted_index.of | 24, 34, 68, 182, 224, 273, 284, 303 |
| abstract_inverted_index.on | 187, 227, 247 |
| abstract_inverted_index.to | 10, 107, 126, 167, 197, 213, 289, 307, 347 |
| abstract_inverted_index.IoT | 139 |
| abstract_inverted_index.Pi. | 174 |
| abstract_inverted_index.The | 32, 47, 143, 175 |
| abstract_inverted_index.and | 4, 16, 28, 63, 71, 83, 87, 99, 120, 130, 134, 140, 149, 171, 202, 230, 239, 251, 266, 298, 342, 351 |
| abstract_inverted_index.are | 59, 90 |
| abstract_inverted_index.due | 9 |
| abstract_inverted_index.for | 26, 37, 44, 51, 61, 78, 95, 115, 326, 345 |
| abstract_inverted_index.the | 22, 29, 45, 93, 128, 147, 153, 164, 168, 172, 188, 194, 200, 209, 215, 219, 222, 228, 248, 260, 263, 267, 271, 277, 301, 315, 322, 333 |
| abstract_inverted_index.Data | 132 |
| abstract_inverted_index.Deep | 85 |
| abstract_inverted_index.This | 123, 330 |
| abstract_inverted_index.aims | 125 |
| abstract_inverted_index.also | 41 |
| abstract_inverted_index.cost | 67 |
| abstract_inverted_index.crop | 2, 349 |
| abstract_inverted_index.data | 116, 151, 166 |
| abstract_inverted_index.deep | 141 |
| abstract_inverted_index.from | 152 |
| abstract_inverted_index.have | 64 |
| abstract_inverted_index.high | 66 |
| abstract_inverted_index.huge | 105 |
| abstract_inverted_index.more | 56, 324 |
| abstract_inverted_index.part | 181 |
| abstract_inverted_index.rust | 15, 203 |
| abstract_inverted_index.such | 13 |
| abstract_inverted_index.that | 259, 286, 332 |
| abstract_inverted_index.this | 183, 244 |
| abstract_inverted_index.time | 317 |
| abstract_inverted_index.tool | 344 |
| abstract_inverted_index.viz. | 233, 292 |
| abstract_inverted_index.with | 193 |
| abstract_inverted_index.Based | 246 |
| abstract_inverted_index.ICAR, | 158 |
| abstract_inverted_index.blast | 17, 201 |
| abstract_inverted_index.cause | 23 |
| abstract_inverted_index.cloud | 169, 189 |
| abstract_inverted_index.handy | 343 |
| abstract_inverted_index.human | 57 |
| abstract_inverted_index.makes | 321 |
| abstract_inverted_index.model | 177, 279, 323, 335 |
| abstract_inverted_index.pearl | 19, 154, 206 |
| abstract_inverted_index.plant | 11, 52, 80, 96 |
| abstract_inverted_index.scope | 106 |
| abstract_inverted_index.sends | 163 |
| abstract_inverted_index.shown | 242 |
| abstract_inverted_index.there | 74, 102 |
| abstract_inverted_index.these | 113 |
| abstract_inverted_index.yield | 3, 350 |
| abstract_inverted_index.98.78% | 285 |
| abstract_inverted_index.India. | 160 |
| abstract_inverted_index.VGG-19 | 240 |
| abstract_inverted_index.advice | 36 |
| abstract_inverted_index.expert | 35 |
| abstract_inverted_index.impact | 223 |
| abstract_inverted_index.millet | 20, 155 |
| abstract_inverted_index.models | 232, 291 |
| abstract_inverted_index.proves | 331 |
| abstract_inverted_index.server | 170 |
| abstract_inverted_index.86.67%. | 319 |
| abstract_inverted_index.Mysore, | 159 |
| abstract_inverted_index.VGG-16, | 238, 297 |
| abstract_inverted_index.VGG-19. | 299 |
| abstract_inverted_index.adopted | 50 |
| abstract_inverted_index.concern | 25 |
| abstract_inverted_index.develop | 108, 127 |
| abstract_inverted_index.disease | 38, 53, 81, 97, 121, 328 |
| abstract_inverted_index.farmers | 27, 346 |
| abstract_inverted_index.feature | 118 |
| abstract_inverted_index.imagery | 148 |
| abstract_inverted_index.improve | 348 |
| abstract_inverted_index.millet. | 207 |
| abstract_inverted_index.models, | 309 |
| abstract_inverted_index.predict | 199 |
| abstract_inverted_index.product | 7, 352 |
| abstract_inverted_index.quality | 8 |
| abstract_inverted_index.reports | 280 |
| abstract_inverted_index.require | 55 |
| abstract_inverted_index.server. | 190 |
| abstract_inverted_index.systems | 110 |
| abstract_inverted_index.unhandy | 60 |
| abstract_inverted_index.Although | 300 |
| abstract_inverted_index.Decrease | 0 |
| abstract_inverted_index.Grad-CAM | 210 |
| abstract_inverted_index.However, | 101 |
| abstract_inverted_index.accuracy | 283 |
| abstract_inverted_index.collects | 146 |
| abstract_inverted_index.deployed | 186 |
| abstract_inverted_index.designed | 178 |
| abstract_inverted_index.diseases | 12, 204 |
| abstract_inverted_index.employed | 212 |
| abstract_inverted_index.extracts | 262 |
| abstract_inverted_index.farmers, | 62 |
| abstract_inverted_index.farmers. | 46 |
| abstract_inverted_index.farmland | 156 |
| abstract_inverted_index.features | 216, 252, 265 |
| abstract_inverted_index.improves | 270 |
| abstract_inverted_index.learning | 86, 226, 269 |
| abstract_inverted_index.low-cost | 109, 341 |
| abstract_inverted_index.observed | 258 |
| abstract_inverted_index.proposed | 91, 334 |
| abstract_inverted_index.quality. | 353 |
| abstract_inverted_index.reducing | 314 |
| abstract_inverted_index.relevant | 264, 274 |
| abstract_inverted_index.research | 124, 184 |
| abstract_inverted_index.results, | 250 |
| abstract_inverted_index.suitable | 325 |
| abstract_inverted_index.training | 316 |
| abstract_inverted_index.transfer | 225, 268 |
| abstract_inverted_index.Collector | 133 |
| abstract_inverted_index.Grad-CAM, | 255 |
| abstract_inverted_index.Inception | 234, 293 |
| abstract_inverted_index.IoT-based | 88 |
| abstract_inverted_index.Moreover, | 208 |
| abstract_inverted_index.Raspberry | 173, 195 |
| abstract_inverted_index.challenge | 43 |
| abstract_inverted_index.collected | 165 |
| abstract_inverted_index.detection | 54, 82, 98 |
| abstract_inverted_index.effective | 312, 337 |
| abstract_inverted_index.extracted | 217 |
| abstract_inverted_index.features. | 275 |
| abstract_inverted_index.framework | 136, 144 |
| abstract_inverted_index.industry. | 31 |
| abstract_inverted_index.learning. | 142 |
| abstract_inverted_index.precisely | 198 |
| abstract_inverted_index.providing | 339 |
| abstract_inverted_index.solutions | 89 |
| abstract_inverted_index.visualize | 214 |
| abstract_inverted_index.ResNet-50, | 237, 296 |
| abstract_inverted_index.ResNet-V2, | 235, 294 |
| abstract_inverted_index.Therefore, | 73 |
| abstract_inverted_index.automating | 79, 327 |
| abstract_inverted_index.comparable | 306 |
| abstract_inverted_index.detection. | 122, 329 |
| abstract_inverted_index.equivalent | 288 |
| abstract_inverted_index.extraction | 272 |
| abstract_inverted_index.literature | 94 |
| abstract_inverted_index.operation, | 70 |
| abstract_inverted_index.parametric | 150 |
| abstract_inverted_index.techniques | 49, 114 |
| abstract_inverted_index.Intelligent | 131 |
| abstract_inverted_index.agriculture | 30 |
| abstract_inverted_index.collection, | 117 |
| abstract_inverted_index.degradation | 5 |
| abstract_inverted_index.deployment, | 69 |
| abstract_inverted_index.integrating | 112, 138 |
| abstract_inverted_index.manuscript. | 245 |
| abstract_inverted_index.requirement | 77 |
| abstract_inverted_index.stipulation | 33 |
| abstract_inverted_index.traditional | 48 |
| abstract_inverted_index.Furthermore, | 221 |
| abstract_inverted_index.collaborates | 192 |
| abstract_inverted_index.experimental | 249 |
| abstract_inverted_index.maintenance. | 72 |
| abstract_inverted_index.‘Automatic | 129 |
| abstract_inverted_index.Additionally, | 276 |
| abstract_inverted_index.Classifier’ | 135 |
| abstract_inverted_index.Inception-V3, | 236, 295 |
| abstract_inverted_index.automatically | 145, 162 |
| abstract_inverted_index.intervention, | 58 |
| abstract_inverted_index.visualization | 253 |
| abstract_inverted_index.classification | 282, 302 |
| abstract_inverted_index.identification | 39 |
| abstract_inverted_index.visualization, | 119 |
| abstract_inverted_index.classification. | 84, 100 |
| abstract_inverted_index.state-of-the-art | 231, 290, 308 |
| abstract_inverted_index.‘Custom-Net’ | 176, 229, 261, 278, 304 |
| abstract_inverted_index.‘Custom-Net’. | 220 |
| cited_by_percentile_year.max | 100 |
| cited_by_percentile_year.min | 98 |
| corresponding_author_ids | https://openalex.org/A5002900384, https://openalex.org/A5057070686 |
| countries_distinct_count | 3 |
| institutions_distinct_count | 8 |
| corresponding_institution_ids | https://openalex.org/I28777354, https://openalex.org/I73779912 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/2 |
| sustainable_development_goals[0].score | 0.6200000047683716 |
| sustainable_development_goals[0].display_name | Zero hunger |
| citation_normalized_percentile.value | 0.99832593 |
| citation_normalized_percentile.is_in_top_1_percent | True |
| citation_normalized_percentile.is_in_top_10_percent | True |