IoT Based Water Turbinity Classification Using Color Sensor TCS3200 Article Swipe
YOU?
·
· 2022
· Open Access
·
· DOI: https://doi.org/10.2991/978-94-6463-084-8_14
The use of water in households must pay attention to the cleanliness factor of the condition of the water itself.Based on the Regulation of the Minister of Health of the Republic of Indonesia Number 416/Menkes/PER/IX/1990, water quality requirements include physical, chemical, biological, and radiological qualities so that if consumed or used, it will not cause side effects.This study created a water turbidity classification system based on the TCS3200 IoT color sensor using the MQTT data communication protocol.This research was conducted by testing three times, namely, black box testing, then hardware testing, namely testing the TCS3200 color sensor, and testing with different containers.This study's classification system belongs to the excellent system category and is feasible to use.The classification system website page can display data from current water conditions and detection history obtained using the MQTT protocol.Based on black box testing, it can be concluded that all functions have been running properly, and the system can perform classification well.Experiments using different containers show that the system can perform the classification as expected if it is calibrated first on each container.Based on the graph of RGB values, mud, moss, and soil have relative RGB values.Tests carried out with closed containers can produce a better classification than containers with open conditions because light intensity influences the surroundings.
Related Topics
- Type
- book-chapter
- Language
- en
- Landing Page
- https://doi.org/10.2991/978-94-6463-084-8_14
- https://www.atlantis-press.com/article/125980151.pdf
- OA Status
- gold
- Cited By
- 1
- References
- 5
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4320509970
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4320509970Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.2991/978-94-6463-084-8_14Digital Object Identifier
- Title
-
IoT Based Water Turbinity Classification Using Color Sensor TCS3200Work title
- Type
-
book-chapterOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2022Year of publication
- Publication date
-
2022-01-01Full publication date if available
- Authors
-
Ida Ayu Vigi Meidhyana Putri, Wirarama Wedashwara, Ariyan Zubaidi, I Wayan Agus ArimbawaList of authors in order
- Landing page
-
https://doi.org/10.2991/978-94-6463-084-8_14Publisher landing page
- PDF URL
-
https://www.atlantis-press.com/article/125980151.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://www.atlantis-press.com/article/125980151.pdfDirect OA link when available
- Concepts
-
Computer science, Artificial intelligence, Internet of Things, Computer vision, Environmental science, Pattern recognition (psychology), Remote sensing, Geography, World Wide WebTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
1Total citation count in OpenAlex
- Citations by year (recent)
-
2024: 1Per-year citation counts (last 5 years)
- References (count)
-
5Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4320509970 |
|---|---|
| doi | https://doi.org/10.2991/978-94-6463-084-8_14 |
| ids.doi | https://doi.org/10.2991/978-94-6463-084-8_14 |
| ids.openalex | https://openalex.org/W4320509970 |
| fwci | 0.69698884 |
| type | book-chapter |
| title | IoT Based Water Turbinity Classification Using Color Sensor TCS3200 |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | 155 |
| biblio.first_page | 142 |
| topics[0].id | https://openalex.org/T12697 |
| topics[0].field.id | https://openalex.org/fields/23 |
| topics[0].field.display_name | Environmental Science |
| topics[0].score | 0.9936000108718872 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2312 |
| topics[0].subfield.display_name | Water Science and Technology |
| topics[0].display_name | Water Quality Monitoring Technologies |
| topics[1].id | https://openalex.org/T11192 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.9024999737739563 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2212 |
| topics[1].subfield.display_name | Ocean Engineering |
| topics[1].display_name | Underwater Vehicles and Communication Systems |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.5409679412841797 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C154945302 |
| concepts[1].level | 1 |
| concepts[1].score | 0.4508691132068634 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[1].display_name | Artificial intelligence |
| concepts[2].id | https://openalex.org/C81860439 |
| concepts[2].level | 2 |
| concepts[2].score | 0.42520591616630554 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q251212 |
| concepts[2].display_name | Internet of Things |
| concepts[3].id | https://openalex.org/C31972630 |
| concepts[3].level | 1 |
| concepts[3].score | 0.38241079449653625 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q844240 |
| concepts[3].display_name | Computer vision |
| concepts[4].id | https://openalex.org/C39432304 |
| concepts[4].level | 0 |
| concepts[4].score | 0.36810752749443054 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q188847 |
| concepts[4].display_name | Environmental science |
| concepts[5].id | https://openalex.org/C153180895 |
| concepts[5].level | 2 |
| concepts[5].score | 0.3478968143463135 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[5].display_name | Pattern recognition (psychology) |
| concepts[6].id | https://openalex.org/C62649853 |
| concepts[6].level | 1 |
| concepts[6].score | 0.3389236330986023 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q199687 |
| concepts[6].display_name | Remote sensing |
| concepts[7].id | https://openalex.org/C205649164 |
| concepts[7].level | 0 |
| concepts[7].score | 0.2205471694469452 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q1071 |
| concepts[7].display_name | Geography |
| concepts[8].id | https://openalex.org/C136764020 |
| concepts[8].level | 1 |
| concepts[8].score | 0.11320918798446655 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q466 |
| concepts[8].display_name | World Wide Web |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.5409679412841797 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[1].score | 0.4508691132068634 |
| keywords[1].display_name | Artificial intelligence |
| keywords[2].id | https://openalex.org/keywords/internet-of-things |
| keywords[2].score | 0.42520591616630554 |
| keywords[2].display_name | Internet of Things |
| keywords[3].id | https://openalex.org/keywords/computer-vision |
| keywords[3].score | 0.38241079449653625 |
| keywords[3].display_name | Computer vision |
| keywords[4].id | https://openalex.org/keywords/environmental-science |
| keywords[4].score | 0.36810752749443054 |
| keywords[4].display_name | Environmental science |
| keywords[5].id | https://openalex.org/keywords/pattern-recognition |
| keywords[5].score | 0.3478968143463135 |
| keywords[5].display_name | Pattern recognition (psychology) |
| keywords[6].id | https://openalex.org/keywords/remote-sensing |
| keywords[6].score | 0.3389236330986023 |
| keywords[6].display_name | Remote sensing |
| keywords[7].id | https://openalex.org/keywords/geography |
| keywords[7].score | 0.2205471694469452 |
| keywords[7].display_name | Geography |
| keywords[8].id | https://openalex.org/keywords/world-wide-web |
| keywords[8].score | 0.11320918798446655 |
| keywords[8].display_name | World Wide Web |
| language | en |
| locations[0].id | doi:10.2991/978-94-6463-084-8_14 |
| locations[0].is_oa | True |
| locations[0].source | |
| locations[0].license | cc-by-nc |
| locations[0].pdf_url | https://www.atlantis-press.com/article/125980151.pdf |
| locations[0].version | publishedVersion |
| locations[0].raw_type | book-chapter |
| locations[0].license_id | https://openalex.org/licenses/cc-by-nc |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Proceedings of the First Mandalika International Multi-Conference on Science and Engineering 2022, MIMSE 2022 (Informatics and Computer Science) |
| locations[0].landing_page_url | https://doi.org/10.2991/978-94-6463-084-8_14 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5049072993 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Ida Ayu Vigi Meidhyana Putri |
| authorships[0].countries | ID |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I168180000 |
| authorships[0].affiliations[0].raw_affiliation_string | Department of Informatics Engineering, University of Mataram, Mataram, Indonesia |
| authorships[0].institutions[0].id | https://openalex.org/I168180000 |
| authorships[0].institutions[0].ror | https://ror.org/00fq07k50 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I168180000 |
| authorships[0].institutions[0].country_code | ID |
| authorships[0].institutions[0].display_name | University of Mataram |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Ida Ayu Vigi Meidhyana Putri |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Department of Informatics Engineering, University of Mataram, Mataram, Indonesia |
| authorships[1].author.id | https://openalex.org/A5016668407 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-3716-1620 |
| authorships[1].author.display_name | Wirarama Wedashwara |
| authorships[1].countries | ID |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I168180000 |
| authorships[1].affiliations[0].raw_affiliation_string | Department of Informatics Engineering, University of Mataram, Mataram, Indonesia |
| authorships[1].institutions[0].id | https://openalex.org/I168180000 |
| authorships[1].institutions[0].ror | https://ror.org/00fq07k50 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I168180000 |
| authorships[1].institutions[0].country_code | ID |
| authorships[1].institutions[0].display_name | University of Mataram |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Wirarama Wedashwara |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Department of Informatics Engineering, University of Mataram, Mataram, Indonesia |
| authorships[2].author.id | https://openalex.org/A5056025166 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-2139-9749 |
| authorships[2].author.display_name | Ariyan Zubaidi |
| authorships[2].countries | ID |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I168180000 |
| authorships[2].affiliations[0].raw_affiliation_string | Department of Informatics Engineering, University of Mataram, Mataram, Indonesia |
| authorships[2].institutions[0].id | https://openalex.org/I168180000 |
| authorships[2].institutions[0].ror | https://ror.org/00fq07k50 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I168180000 |
| authorships[2].institutions[0].country_code | ID |
| authorships[2].institutions[0].display_name | University of Mataram |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Ariyan Zubaidi |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Department of Informatics Engineering, University of Mataram, Mataram, Indonesia |
| authorships[3].author.id | https://openalex.org/A5025084552 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-3483-3639 |
| authorships[3].author.display_name | I Wayan Agus Arimbawa |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | I Wayan Agus Arimbawa |
| authorships[3].is_corresponding | False |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.atlantis-press.com/article/125980151.pdf |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | IoT Based Water Turbinity Classification Using Color Sensor TCS3200 |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T12697 |
| primary_topic.field.id | https://openalex.org/fields/23 |
| primary_topic.field.display_name | Environmental Science |
| primary_topic.score | 0.9936000108718872 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2312 |
| primary_topic.subfield.display_name | Water Science and Technology |
| primary_topic.display_name | Water Quality Monitoring Technologies |
| related_works | https://openalex.org/W2899084033, https://openalex.org/W1891287906, https://openalex.org/W2036807459, https://openalex.org/W2775347418, https://openalex.org/W1969923398, https://openalex.org/W2772917594, https://openalex.org/W2751166006, https://openalex.org/W2166024367, https://openalex.org/W2755342338, https://openalex.org/W3116076068 |
| cited_by_count | 1 |
| counts_by_year[0].year | 2024 |
| counts_by_year[0].cited_by_count | 1 |
| locations_count | 1 |
| best_oa_location.id | doi:10.2991/978-94-6463-084-8_14 |
| best_oa_location.is_oa | True |
| best_oa_location.source | |
| best_oa_location.license | cc-by-nc |
| best_oa_location.pdf_url | https://www.atlantis-press.com/article/125980151.pdf |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | book-chapter |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by-nc |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Proceedings of the First Mandalika International Multi-Conference on Science and Engineering 2022, MIMSE 2022 (Informatics and Computer Science) |
| best_oa_location.landing_page_url | https://doi.org/10.2991/978-94-6463-084-8_14 |
| primary_location.id | doi:10.2991/978-94-6463-084-8_14 |
| primary_location.is_oa | True |
| primary_location.source | |
| primary_location.license | cc-by-nc |
| primary_location.pdf_url | https://www.atlantis-press.com/article/125980151.pdf |
| primary_location.version | publishedVersion |
| primary_location.raw_type | book-chapter |
| primary_location.license_id | https://openalex.org/licenses/cc-by-nc |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Proceedings of the First Mandalika International Multi-Conference on Science and Engineering 2022, MIMSE 2022 (Informatics and Computer Science) |
| primary_location.landing_page_url | https://doi.org/10.2991/978-94-6463-084-8_14 |
| publication_date | 2022-01-01 |
| publication_year | 2022 |
| referenced_works | https://openalex.org/W2619353159, https://openalex.org/W2438087834, https://openalex.org/W3158520051, https://openalex.org/W2735596654, https://openalex.org/W1508327370 |
| referenced_works_count | 5 |
| abstract_inverted_index.a | 59, 199 |
| abstract_inverted_index.as | 168 |
| abstract_inverted_index.be | 141 |
| abstract_inverted_index.by | 80 |
| abstract_inverted_index.if | 47, 170 |
| abstract_inverted_index.in | 4 |
| abstract_inverted_index.is | 112, 172 |
| abstract_inverted_index.it | 51, 139, 171 |
| abstract_inverted_index.of | 2, 13, 16, 23, 26, 28, 31, 181 |
| abstract_inverted_index.on | 20, 65, 135, 175, 178 |
| abstract_inverted_index.or | 49 |
| abstract_inverted_index.so | 45 |
| abstract_inverted_index.to | 9, 106, 114 |
| abstract_inverted_index.IoT | 68 |
| abstract_inverted_index.RGB | 182, 190 |
| abstract_inverted_index.The | 0 |
| abstract_inverted_index.all | 144 |
| abstract_inverted_index.and | 42, 97, 111, 127, 150, 186 |
| abstract_inverted_index.box | 86, 137 |
| abstract_inverted_index.can | 120, 140, 153, 164, 197 |
| abstract_inverted_index.not | 53 |
| abstract_inverted_index.out | 193 |
| abstract_inverted_index.pay | 7 |
| abstract_inverted_index.the | 10, 14, 17, 21, 24, 29, 66, 72, 93, 107, 132, 151, 162, 166, 179, 211 |
| abstract_inverted_index.use | 1 |
| abstract_inverted_index.was | 78 |
| abstract_inverted_index.MQTT | 73, 133 |
| abstract_inverted_index.been | 147 |
| abstract_inverted_index.data | 74, 122 |
| abstract_inverted_index.each | 176 |
| abstract_inverted_index.from | 123 |
| abstract_inverted_index.have | 146, 188 |
| abstract_inverted_index.mud, | 184 |
| abstract_inverted_index.must | 6 |
| abstract_inverted_index.open | 205 |
| abstract_inverted_index.page | 119 |
| abstract_inverted_index.show | 160 |
| abstract_inverted_index.side | 55 |
| abstract_inverted_index.soil | 187 |
| abstract_inverted_index.than | 202 |
| abstract_inverted_index.that | 46, 143, 161 |
| abstract_inverted_index.then | 88 |
| abstract_inverted_index.will | 52 |
| abstract_inverted_index.with | 99, 194, 204 |
| abstract_inverted_index.based | 64 |
| abstract_inverted_index.black | 85, 136 |
| abstract_inverted_index.cause | 54 |
| abstract_inverted_index.color | 69, 95 |
| abstract_inverted_index.first | 174 |
| abstract_inverted_index.graph | 180 |
| abstract_inverted_index.light | 208 |
| abstract_inverted_index.moss, | 185 |
| abstract_inverted_index.study | 57 |
| abstract_inverted_index.three | 82 |
| abstract_inverted_index.used, | 50 |
| abstract_inverted_index.using | 71, 131, 157 |
| abstract_inverted_index.water | 3, 18, 35, 60, 125 |
| abstract_inverted_index.Health | 27 |
| abstract_inverted_index.Number | 33 |
| abstract_inverted_index.better | 200 |
| abstract_inverted_index.closed | 195 |
| abstract_inverted_index.factor | 12 |
| abstract_inverted_index.namely | 91 |
| abstract_inverted_index.sensor | 70 |
| abstract_inverted_index.system | 63, 104, 109, 117, 152, 163 |
| abstract_inverted_index.times, | 83 |
| abstract_inverted_index.TCS3200 | 67, 94 |
| abstract_inverted_index.because | 207 |
| abstract_inverted_index.belongs | 105 |
| abstract_inverted_index.carried | 192 |
| abstract_inverted_index.created | 58 |
| abstract_inverted_index.current | 124 |
| abstract_inverted_index.display | 121 |
| abstract_inverted_index.history | 129 |
| abstract_inverted_index.include | 38 |
| abstract_inverted_index.namely, | 84 |
| abstract_inverted_index.perform | 154, 165 |
| abstract_inverted_index.produce | 198 |
| abstract_inverted_index.quality | 36 |
| abstract_inverted_index.running | 148 |
| abstract_inverted_index.sensor, | 96 |
| abstract_inverted_index.study's | 102 |
| abstract_inverted_index.testing | 81, 92, 98 |
| abstract_inverted_index.use.The | 115 |
| abstract_inverted_index.values, | 183 |
| abstract_inverted_index.website | 118 |
| abstract_inverted_index.Minister | 25 |
| abstract_inverted_index.Republic | 30 |
| abstract_inverted_index.category | 110 |
| abstract_inverted_index.consumed | 48 |
| abstract_inverted_index.expected | 169 |
| abstract_inverted_index.feasible | 113 |
| abstract_inverted_index.hardware | 89 |
| abstract_inverted_index.obtained | 130 |
| abstract_inverted_index.relative | 189 |
| abstract_inverted_index.research | 77 |
| abstract_inverted_index.testing, | 87, 90, 138 |
| abstract_inverted_index.Indonesia | 32 |
| abstract_inverted_index.attention | 8 |
| abstract_inverted_index.chemical, | 40 |
| abstract_inverted_index.concluded | 142 |
| abstract_inverted_index.condition | 15 |
| abstract_inverted_index.conducted | 79 |
| abstract_inverted_index.detection | 128 |
| abstract_inverted_index.different | 100, 158 |
| abstract_inverted_index.excellent | 108 |
| abstract_inverted_index.functions | 145 |
| abstract_inverted_index.intensity | 209 |
| abstract_inverted_index.physical, | 39 |
| abstract_inverted_index.properly, | 149 |
| abstract_inverted_index.qualities | 44 |
| abstract_inverted_index.turbidity | 61 |
| abstract_inverted_index.Regulation | 22 |
| abstract_inverted_index.calibrated | 173 |
| abstract_inverted_index.conditions | 126, 206 |
| abstract_inverted_index.containers | 159, 196, 203 |
| abstract_inverted_index.households | 5 |
| abstract_inverted_index.influences | 210 |
| abstract_inverted_index.biological, | 41 |
| abstract_inverted_index.cleanliness | 11 |
| abstract_inverted_index.effects.This | 56 |
| abstract_inverted_index.itself.Based | 19 |
| abstract_inverted_index.radiological | 43 |
| abstract_inverted_index.requirements | 37 |
| abstract_inverted_index.values.Tests | 191 |
| abstract_inverted_index.communication | 75 |
| abstract_inverted_index.protocol.This | 76 |
| abstract_inverted_index.surroundings. | 212 |
| abstract_inverted_index.classification | 62, 103, 116, 155, 167, 201 |
| abstract_inverted_index.protocol.Based | 134 |
| abstract_inverted_index.container.Based | 177 |
| abstract_inverted_index.containers.This | 101 |
| abstract_inverted_index.well.Experiments | 156 |
| abstract_inverted_index.416/Menkes/PER/IX/1990, | 34 |
| cited_by_percentile_year.max | 94 |
| cited_by_percentile_year.min | 90 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 4 |
| citation_normalized_percentile.value | 0.78141593 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |