IOT-DRIVEN HEART DISEASE PREDICTION WITH INTELLIGENT CLASSIFIER AND SQUIRREL SEARCH FEATURE SELECTION Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.1142/s0218348x25400055
Cardiovascular disease (CVD) is the leading cause of global mortality in the modern world. This situation is difficult to predict and requires a combination of advanced techniques and specialist knowledge. Healthcare systems have recently adopted the Internet of Things (IoT) to collect critical sensor data to diagnose and predict CVD. Predictive models can be made more accurate and effective through such integration, which could radically change how we manage cardiovascular health. This study presents an improved squirrel search optimization algorithm for searching vital indications of CVD. To address the issue of low-cardiac diagnostic accuracy, the proposed IoT system uses enhanced squirrel search optimization with deep convolutional neural networks (SSO-DCNN). This new approach uses data from smartwatches and cardiac devices, which monitor patients’ electrocardiogram (ECG) and blood pressure readings. The proposed SSO-DCNN performs well compared to well-known deep learning networks such as logistic regression. The findings show an accuracy of 99.1% over current classifiers, suggesting effectiveness in the CVD prediction.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1142/s0218348x25400055
- OA Status
- hybrid
- References
- 21
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4405703047
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4405703047Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1142/s0218348x25400055Digital Object Identifier
- Title
-
IOT-DRIVEN HEART DISEASE PREDICTION WITH INTELLIGENT CLASSIFIER AND SQUIRREL SEARCH FEATURE SELECTIONWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-12-23Full publication date if available
- Authors
-
Abdulbasit A. Darem, Manal Abdullah Alohali, Siwar Ben Haj Hassine, Belal Zaqaibeh, Majed Aborokbah, Ahmed S. SalamaList of authors in order
- Landing page
-
https://doi.org/10.1142/s0218348x25400055Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
hybridOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.1142/s0218348x25400055Direct OA link when available
- Concepts
-
License, Computer science, Library science, Download, Digital library, World Wide Web, Classifier (UML), Artificial intelligence, Art, Operating system, Literature, PoetryTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
21Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4405703047 |
|---|---|
| doi | https://doi.org/10.1142/s0218348x25400055 |
| ids.doi | https://doi.org/10.1142/s0218348x25400055 |
| ids.openalex | https://openalex.org/W4405703047 |
| fwci | 0.0 |
| type | article |
| title | IOT-DRIVEN HEART DISEASE PREDICTION WITH INTELLIGENT CLASSIFIER AND SQUIRREL SEARCH FEATURE SELECTION |
| biblio.issue | 02 |
| biblio.volume | 33 |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10429 |
| topics[0].field.id | https://openalex.org/fields/28 |
| topics[0].field.display_name | Neuroscience |
| topics[0].score | 0.9785000085830688 |
| topics[0].domain.id | https://openalex.org/domains/1 |
| topics[0].domain.display_name | Life Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2805 |
| topics[0].subfield.display_name | Cognitive Neuroscience |
| topics[0].display_name | EEG and Brain-Computer Interfaces |
| topics[1].id | https://openalex.org/T11326 |
| topics[1].field.id | https://openalex.org/fields/18 |
| topics[1].field.display_name | Decision Sciences |
| topics[1].score | 0.9767000079154968 |
| topics[1].domain.id | https://openalex.org/domains/2 |
| topics[1].domain.display_name | Social Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1803 |
| topics[1].subfield.display_name | Management Science and Operations Research |
| topics[1].display_name | Stock Market Forecasting Methods |
| topics[2].id | https://openalex.org/T10320 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9724000096321106 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1702 |
| topics[2].subfield.display_name | Artificial Intelligence |
| topics[2].display_name | Neural Networks and Applications |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C2780560020 |
| concepts[0].level | 2 |
| concepts[0].score | 0.5910493731498718 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q79719 |
| concepts[0].display_name | License |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.5767887830734253 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C161191863 |
| concepts[2].level | 1 |
| concepts[2].score | 0.4671337902545929 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q199655 |
| concepts[2].display_name | Library science |
| concepts[3].id | https://openalex.org/C2780154274 |
| concepts[3].level | 2 |
| concepts[3].score | 0.45332589745521545 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q7126717 |
| concepts[3].display_name | Download |
| concepts[4].id | https://openalex.org/C513874922 |
| concepts[4].level | 3 |
| concepts[4].score | 0.43589285016059875 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q212805 |
| concepts[4].display_name | Digital library |
| concepts[5].id | https://openalex.org/C136764020 |
| concepts[5].level | 1 |
| concepts[5].score | 0.42319706082344055 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q466 |
| concepts[5].display_name | World Wide Web |
| concepts[6].id | https://openalex.org/C95623464 |
| concepts[6].level | 2 |
| concepts[6].score | 0.41514426469802856 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q1096149 |
| concepts[6].display_name | Classifier (UML) |
| concepts[7].id | https://openalex.org/C154945302 |
| concepts[7].level | 1 |
| concepts[7].score | 0.31095874309539795 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[7].display_name | Artificial intelligence |
| concepts[8].id | https://openalex.org/C142362112 |
| concepts[8].level | 0 |
| concepts[8].score | 0.1511896550655365 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q735 |
| concepts[8].display_name | Art |
| concepts[9].id | https://openalex.org/C111919701 |
| concepts[9].level | 1 |
| concepts[9].score | 0.0 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q9135 |
| concepts[9].display_name | Operating system |
| concepts[10].id | https://openalex.org/C124952713 |
| concepts[10].level | 1 |
| concepts[10].score | 0.0 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q8242 |
| concepts[10].display_name | Literature |
| concepts[11].id | https://openalex.org/C164913051 |
| concepts[11].level | 2 |
| concepts[11].score | 0.0 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q482 |
| concepts[11].display_name | Poetry |
| keywords[0].id | https://openalex.org/keywords/license |
| keywords[0].score | 0.5910493731498718 |
| keywords[0].display_name | License |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.5767887830734253 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/library-science |
| keywords[2].score | 0.4671337902545929 |
| keywords[2].display_name | Library science |
| keywords[3].id | https://openalex.org/keywords/download |
| keywords[3].score | 0.45332589745521545 |
| keywords[3].display_name | Download |
| keywords[4].id | https://openalex.org/keywords/digital-library |
| keywords[4].score | 0.43589285016059875 |
| keywords[4].display_name | Digital library |
| keywords[5].id | https://openalex.org/keywords/world-wide-web |
| keywords[5].score | 0.42319706082344055 |
| keywords[5].display_name | World Wide Web |
| keywords[6].id | https://openalex.org/keywords/classifier |
| keywords[6].score | 0.41514426469802856 |
| keywords[6].display_name | Classifier (UML) |
| keywords[7].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[7].score | 0.31095874309539795 |
| keywords[7].display_name | Artificial intelligence |
| keywords[8].id | https://openalex.org/keywords/art |
| keywords[8].score | 0.1511896550655365 |
| keywords[8].display_name | Art |
| language | en |
| locations[0].id | doi:10.1142/s0218348x25400055 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S204703277 |
| locations[0].source.issn | 0218-348X, 1793-6543 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | 0218-348X |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Fractals |
| locations[0].source.host_organization | https://openalex.org/P4310319815 |
| locations[0].source.host_organization_name | World Scientific |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310319815 |
| locations[0].source.host_organization_lineage_names | World Scientific |
| locations[0].license | cc-by-nc-nd |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by-nc-nd |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Fractals |
| locations[0].landing_page_url | https://doi.org/10.1142/s0218348x25400055 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5060131213 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-5650-1838 |
| authorships[0].author.display_name | Abdulbasit A. Darem |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Abdulbasit A. Darem |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5018019909 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-1975-5345 |
| authorships[1].author.display_name | Manal Abdullah Alohali |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Manal Abdullah Alohali |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5089886514 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-9501-1930 |
| authorships[2].author.display_name | Siwar Ben Haj Hassine |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Siwar Ben Haj Hassine |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5023056783 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-1517-3049 |
| authorships[3].author.display_name | Belal Zaqaibeh |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Belal Zaqaibeh |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5115611266 |
| authorships[4].author.orcid | |
| authorships[4].author.display_name | Majed Aborokbah |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Majed Aborokbah |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5101966780 |
| authorships[5].author.orcid | https://orcid.org/0000-0001-5362-0113 |
| authorships[5].author.display_name | Ahmed S. Salama |
| authorships[5].author_position | last |
| authorships[5].raw_author_name | Ahmed S. Salama |
| authorships[5].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.1142/s0218348x25400055 |
| open_access.oa_status | hybrid |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | IOT-DRIVEN HEART DISEASE PREDICTION WITH INTELLIGENT CLASSIFIER AND SQUIRREL SEARCH FEATURE SELECTION |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10429 |
| primary_topic.field.id | https://openalex.org/fields/28 |
| primary_topic.field.display_name | Neuroscience |
| primary_topic.score | 0.9785000085830688 |
| primary_topic.domain.id | https://openalex.org/domains/1 |
| primary_topic.domain.display_name | Life Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2805 |
| primary_topic.subfield.display_name | Cognitive Neuroscience |
| primary_topic.display_name | EEG and Brain-Computer Interfaces |
| related_works | https://openalex.org/W2748952813, https://openalex.org/W2183842793, https://openalex.org/W2606446052, https://openalex.org/W2036021480, https://openalex.org/W4255676640, https://openalex.org/W2485259751, https://openalex.org/W4236216870, https://openalex.org/W4243876796, https://openalex.org/W2485273903, https://openalex.org/W2482041988 |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.1142/s0218348x25400055 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S204703277 |
| best_oa_location.source.issn | 0218-348X, 1793-6543 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | 0218-348X |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Fractals |
| best_oa_location.source.host_organization | https://openalex.org/P4310319815 |
| best_oa_location.source.host_organization_name | World Scientific |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310319815 |
| best_oa_location.source.host_organization_lineage_names | World Scientific |
| best_oa_location.license | cc-by-nc-nd |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by-nc-nd |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Fractals |
| best_oa_location.landing_page_url | https://doi.org/10.1142/s0218348x25400055 |
| primary_location.id | doi:10.1142/s0218348x25400055 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S204703277 |
| primary_location.source.issn | 0218-348X, 1793-6543 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | 0218-348X |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Fractals |
| primary_location.source.host_organization | https://openalex.org/P4310319815 |
| primary_location.source.host_organization_name | World Scientific |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310319815 |
| primary_location.source.host_organization_lineage_names | World Scientific |
| primary_location.license | cc-by-nc-nd |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by-nc-nd |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Fractals |
| primary_location.landing_page_url | https://doi.org/10.1142/s0218348x25400055 |
| publication_date | 2024-12-23 |
| publication_year | 2024 |
| referenced_works | https://openalex.org/W3007212997, https://openalex.org/W3012254913, https://openalex.org/W2956571997, https://openalex.org/W2777543632, https://openalex.org/W2729584891, https://openalex.org/W2949767632, https://openalex.org/W2514534764, https://openalex.org/W2800094831, https://openalex.org/W2920805549, https://openalex.org/W2538545441, https://openalex.org/W2898682710, https://openalex.org/W4214638371, https://openalex.org/W3015620176, https://openalex.org/W3127579042, https://openalex.org/W2791899797, https://openalex.org/W2752051970, https://openalex.org/W2922256990, https://openalex.org/W2886899600, https://openalex.org/W2566909686, https://openalex.org/W2100495367, https://openalex.org/W2911489875 |
| referenced_works_count | 21 |
| abstract_inverted_index.a | 22 |
| abstract_inverted_index.To | 86 |
| abstract_inverted_index.an | 74, 146 |
| abstract_inverted_index.as | 140 |
| abstract_inverted_index.be | 53 |
| abstract_inverted_index.in | 10, 155 |
| abstract_inverted_index.is | 3, 16 |
| abstract_inverted_index.of | 7, 24, 37, 84, 90, 148 |
| abstract_inverted_index.to | 18, 40, 45, 134 |
| abstract_inverted_index.we | 67 |
| abstract_inverted_index.CVD | 157 |
| abstract_inverted_index.IoT | 96 |
| abstract_inverted_index.The | 128, 143 |
| abstract_inverted_index.and | 20, 27, 47, 57, 116, 124 |
| abstract_inverted_index.can | 52 |
| abstract_inverted_index.for | 80 |
| abstract_inverted_index.how | 66 |
| abstract_inverted_index.new | 110 |
| abstract_inverted_index.the | 4, 11, 35, 88, 94, 156 |
| abstract_inverted_index.CVD. | 49, 85 |
| abstract_inverted_index.This | 14, 71, 109 |
| abstract_inverted_index.data | 44, 113 |
| abstract_inverted_index.deep | 104, 136 |
| abstract_inverted_index.from | 114 |
| abstract_inverted_index.have | 32 |
| abstract_inverted_index.made | 54 |
| abstract_inverted_index.more | 55 |
| abstract_inverted_index.over | 150 |
| abstract_inverted_index.show | 145 |
| abstract_inverted_index.such | 60, 139 |
| abstract_inverted_index.uses | 98, 112 |
| abstract_inverted_index.well | 132 |
| abstract_inverted_index.with | 103 |
| abstract_inverted_index.(CVD) | 2 |
| abstract_inverted_index.(ECG) | 123 |
| abstract_inverted_index.(IoT) | 39 |
| abstract_inverted_index.99.1% | 149 |
| abstract_inverted_index.blood | 125 |
| abstract_inverted_index.cause | 6 |
| abstract_inverted_index.could | 63 |
| abstract_inverted_index.issue | 89 |
| abstract_inverted_index.study | 72 |
| abstract_inverted_index.vital | 82 |
| abstract_inverted_index.which | 62, 119 |
| abstract_inverted_index.Things | 38 |
| abstract_inverted_index.change | 65 |
| abstract_inverted_index.global | 8 |
| abstract_inverted_index.manage | 68 |
| abstract_inverted_index.models | 51 |
| abstract_inverted_index.modern | 12 |
| abstract_inverted_index.neural | 106 |
| abstract_inverted_index.search | 77, 101 |
| abstract_inverted_index.sensor | 43 |
| abstract_inverted_index.system | 97 |
| abstract_inverted_index.world. | 13 |
| abstract_inverted_index.address | 87 |
| abstract_inverted_index.adopted | 34 |
| abstract_inverted_index.cardiac | 117 |
| abstract_inverted_index.collect | 41 |
| abstract_inverted_index.current | 151 |
| abstract_inverted_index.disease | 1 |
| abstract_inverted_index.health. | 70 |
| abstract_inverted_index.leading | 5 |
| abstract_inverted_index.monitor | 120 |
| abstract_inverted_index.predict | 19, 48 |
| abstract_inverted_index.systems | 31 |
| abstract_inverted_index.through | 59 |
| abstract_inverted_index.Internet | 36 |
| abstract_inverted_index.SSO-DCNN | 130 |
| abstract_inverted_index.accuracy | 147 |
| abstract_inverted_index.accurate | 56 |
| abstract_inverted_index.advanced | 25 |
| abstract_inverted_index.approach | 111 |
| abstract_inverted_index.compared | 133 |
| abstract_inverted_index.critical | 42 |
| abstract_inverted_index.devices, | 118 |
| abstract_inverted_index.diagnose | 46 |
| abstract_inverted_index.enhanced | 99 |
| abstract_inverted_index.findings | 144 |
| abstract_inverted_index.improved | 75 |
| abstract_inverted_index.learning | 137 |
| abstract_inverted_index.logistic | 141 |
| abstract_inverted_index.networks | 107, 138 |
| abstract_inverted_index.performs | 131 |
| abstract_inverted_index.presents | 73 |
| abstract_inverted_index.pressure | 126 |
| abstract_inverted_index.proposed | 95, 129 |
| abstract_inverted_index.recently | 33 |
| abstract_inverted_index.requires | 21 |
| abstract_inverted_index.squirrel | 76, 100 |
| abstract_inverted_index.accuracy, | 93 |
| abstract_inverted_index.algorithm | 79 |
| abstract_inverted_index.difficult | 17 |
| abstract_inverted_index.effective | 58 |
| abstract_inverted_index.mortality | 9 |
| abstract_inverted_index.radically | 64 |
| abstract_inverted_index.readings. | 127 |
| abstract_inverted_index.searching | 81 |
| abstract_inverted_index.situation | 15 |
| abstract_inverted_index.Healthcare | 30 |
| abstract_inverted_index.Predictive | 50 |
| abstract_inverted_index.diagnostic | 92 |
| abstract_inverted_index.knowledge. | 29 |
| abstract_inverted_index.specialist | 28 |
| abstract_inverted_index.suggesting | 153 |
| abstract_inverted_index.techniques | 26 |
| abstract_inverted_index.well-known | 135 |
| abstract_inverted_index.(SSO-DCNN). | 108 |
| abstract_inverted_index.combination | 23 |
| abstract_inverted_index.indications | 83 |
| abstract_inverted_index.low-cardiac | 91 |
| abstract_inverted_index.patients’ | 121 |
| abstract_inverted_index.prediction. | 158 |
| abstract_inverted_index.regression. | 142 |
| abstract_inverted_index.classifiers, | 152 |
| abstract_inverted_index.integration, | 61 |
| abstract_inverted_index.optimization | 78, 102 |
| abstract_inverted_index.smartwatches | 115 |
| abstract_inverted_index.convolutional | 105 |
| abstract_inverted_index.effectiveness | 154 |
| abstract_inverted_index.Cardiovascular | 0 |
| abstract_inverted_index.cardiovascular | 69 |
| abstract_inverted_index.electrocardiogram | 122 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 6 |
| citation_normalized_percentile.value | 0.30358579 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |