IoTDevID: A Behaviour-Based Fingerprinting Method for Device Identification in the IoT. Article Swipe
Device identification is one way to secure a network of IoT devices, whereby devices identified as suspicious can subsequently be isolated from a network. We introduce a novel fingerprinting method, IoTDevID, for device identification that uses machine learning to model the behaviour of IoT devices based on network packets. Our method uses an enhanced combination of features from previous work and includes an approach for dealing with unbalanced device data via data augmentation. We further demonstrate how to enhance device identification via a group-wise data aggregation. We provide a comparative evaluation of our method against two recent identification methods using three public IoT datasets which together contain data from over 100 devices. Through our evaluation we demonstrate improved performance over previous results with F1-scores above 99%, with considerable improvement gained from data aggregation.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- https://aps.arxiv.org/pdf/2102.08866
- OA Status
- green
- Cited By
- 4
- References
- 6
- Related Works
- 20
- OpenAlex ID
- https://openalex.org/W3129678898
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W3129678898Canonical identifier for this work in OpenAlex
- Title
-
IoTDevID: A Behaviour-Based Fingerprinting Method for Device Identification in the IoT.Work title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2021Year of publication
- Publication date
-
2021-02-17Full publication date if available
- Authors
-
Kahraman Kostas, Mike Just, Michael A. LonesList of authors in order
- Landing page
-
https://aps.arxiv.org/pdf/2102.08866Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://aps.arxiv.org/pdf/2102.08866Direct OA link when available
- Concepts
-
Identification (biology), Computer science, Internet of Things, Network packet, Data mining, Computer network, Computer security, Botany, BiologyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
4Total citation count in OpenAlex
- Citations by year (recent)
-
2024: 1, 2021: 3Per-year citation counts (last 5 years)
- References (count)
-
6Number of works referenced by this work
- Related works (count)
-
20Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W3129678898 |
|---|---|
| doi | |
| ids.mag | 3129678898 |
| ids.openalex | https://openalex.org/W3129678898 |
| fwci | |
| type | preprint |
| title | IoTDevID: A Behaviour-Based Fingerprinting Method for Device Identification in the IoT. |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11598 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9998000264167786 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Internet Traffic Analysis and Secure E-voting |
| topics[1].id | https://openalex.org/T10400 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9965000152587891 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1705 |
| topics[1].subfield.display_name | Computer Networks and Communications |
| topics[1].display_name | Network Security and Intrusion Detection |
| topics[2].id | https://openalex.org/T11147 |
| topics[2].field.id | https://openalex.org/fields/33 |
| topics[2].field.display_name | Social Sciences |
| topics[2].score | 0.9927999973297119 |
| topics[2].domain.id | https://openalex.org/domains/2 |
| topics[2].domain.display_name | Social Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/3312 |
| topics[2].subfield.display_name | Sociology and Political Science |
| topics[2].display_name | Misinformation and Its Impacts |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C116834253 |
| concepts[0].level | 2 |
| concepts[0].score | 0.8349422216415405 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q2039217 |
| concepts[0].display_name | Identification (biology) |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.8163977861404419 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C81860439 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6421597003936768 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q251212 |
| concepts[2].display_name | Internet of Things |
| concepts[3].id | https://openalex.org/C158379750 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5910763740539551 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q214111 |
| concepts[3].display_name | Network packet |
| concepts[4].id | https://openalex.org/C124101348 |
| concepts[4].level | 1 |
| concepts[4].score | 0.4448367953300476 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q172491 |
| concepts[4].display_name | Data mining |
| concepts[5].id | https://openalex.org/C31258907 |
| concepts[5].level | 1 |
| concepts[5].score | 0.30260518193244934 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q1301371 |
| concepts[5].display_name | Computer network |
| concepts[6].id | https://openalex.org/C38652104 |
| concepts[6].level | 1 |
| concepts[6].score | 0.2878153324127197 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q3510521 |
| concepts[6].display_name | Computer security |
| concepts[7].id | https://openalex.org/C59822182 |
| concepts[7].level | 1 |
| concepts[7].score | 0.0 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q441 |
| concepts[7].display_name | Botany |
| concepts[8].id | https://openalex.org/C86803240 |
| concepts[8].level | 0 |
| concepts[8].score | 0.0 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q420 |
| concepts[8].display_name | Biology |
| keywords[0].id | https://openalex.org/keywords/identification |
| keywords[0].score | 0.8349422216415405 |
| keywords[0].display_name | Identification (biology) |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.8163977861404419 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/internet-of-things |
| keywords[2].score | 0.6421597003936768 |
| keywords[2].display_name | Internet of Things |
| keywords[3].id | https://openalex.org/keywords/network-packet |
| keywords[3].score | 0.5910763740539551 |
| keywords[3].display_name | Network packet |
| keywords[4].id | https://openalex.org/keywords/data-mining |
| keywords[4].score | 0.4448367953300476 |
| keywords[4].display_name | Data mining |
| keywords[5].id | https://openalex.org/keywords/computer-network |
| keywords[5].score | 0.30260518193244934 |
| keywords[5].display_name | Computer network |
| keywords[6].id | https://openalex.org/keywords/computer-security |
| keywords[6].score | 0.2878153324127197 |
| keywords[6].display_name | Computer security |
| language | en |
| locations[0].id | mag:3129678898 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | |
| locations[0].version | submittedVersion |
| locations[0].raw_type | |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | arXiv (Cornell University) |
| locations[0].landing_page_url | https://aps.arxiv.org/pdf/2102.08866 |
| authorships[0].author.id | https://openalex.org/A5058691307 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-4696-1857 |
| authorships[0].author.display_name | Kahraman Kostas |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Kahraman Kostas |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5037048837 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-9669-5067 |
| authorships[1].author.display_name | Mike Just |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Mike Just |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5049325379 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-2745-9896 |
| authorships[2].author.display_name | Michael A. Lones |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Michael A. Lones |
| authorships[2].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://aps.arxiv.org/pdf/2102.08866 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | IoTDevID: A Behaviour-Based Fingerprinting Method for Device Identification in the IoT. |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-10-10T17:16:08.811792 |
| primary_topic.id | https://openalex.org/T11598 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9998000264167786 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Internet Traffic Analysis and Secure E-voting |
| related_works | https://openalex.org/W3198423425, https://openalex.org/W2967495102, https://openalex.org/W3045795781, https://openalex.org/W2745169232, https://openalex.org/W3098596104, https://openalex.org/W2964027441, https://openalex.org/W3123096735, https://openalex.org/W3148814392, https://openalex.org/W3139779974, https://openalex.org/W3012282060, https://openalex.org/W2977527445, https://openalex.org/W3175582452, https://openalex.org/W3099534669, https://openalex.org/W3130016916, https://openalex.org/W2911268945, https://openalex.org/W3083509722, https://openalex.org/W3041841316, https://openalex.org/W2403632214, https://openalex.org/W3080116727, https://openalex.org/W3172292873 |
| cited_by_count | 4 |
| counts_by_year[0].year | 2024 |
| counts_by_year[0].cited_by_count | 1 |
| counts_by_year[1].year | 2021 |
| counts_by_year[1].cited_by_count | 3 |
| locations_count | 1 |
| best_oa_location.id | mag:3129678898 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | arXiv (Cornell University) |
| best_oa_location.landing_page_url | https://aps.arxiv.org/pdf/2102.08866 |
| primary_location.id | mag:3129678898 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | |
| primary_location.version | submittedVersion |
| primary_location.raw_type | |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | arXiv (Cornell University) |
| primary_location.landing_page_url | https://aps.arxiv.org/pdf/2102.08866 |
| publication_date | 2021-02-17 |
| publication_year | 2021 |
| referenced_works | https://openalex.org/W3020687048, https://openalex.org/W2796752442, https://openalex.org/W2332912277, https://openalex.org/W2938707507, https://openalex.org/W2911505293, https://openalex.org/W2002254092 |
| referenced_works_count | 6 |
| abstract_inverted_index.a | 7, 22, 26, 82, 88 |
| abstract_inverted_index.We | 24, 73, 86 |
| abstract_inverted_index.an | 52, 62 |
| abstract_inverted_index.as | 15 |
| abstract_inverted_index.be | 19 |
| abstract_inverted_index.is | 2 |
| abstract_inverted_index.of | 9, 42, 55, 91 |
| abstract_inverted_index.on | 46 |
| abstract_inverted_index.to | 5, 38, 77 |
| abstract_inverted_index.we | 115 |
| abstract_inverted_index.100 | 110 |
| abstract_inverted_index.IoT | 10, 43, 102 |
| abstract_inverted_index.Our | 49 |
| abstract_inverted_index.and | 60 |
| abstract_inverted_index.can | 17 |
| abstract_inverted_index.for | 31, 64 |
| abstract_inverted_index.how | 76 |
| abstract_inverted_index.one | 3 |
| abstract_inverted_index.our | 92, 113 |
| abstract_inverted_index.the | 40 |
| abstract_inverted_index.two | 95 |
| abstract_inverted_index.via | 70, 81 |
| abstract_inverted_index.way | 4 |
| abstract_inverted_index.99%, | 125 |
| abstract_inverted_index.data | 69, 71, 84, 107, 131 |
| abstract_inverted_index.from | 21, 57, 108, 130 |
| abstract_inverted_index.over | 109, 119 |
| abstract_inverted_index.that | 34 |
| abstract_inverted_index.uses | 35, 51 |
| abstract_inverted_index.with | 66, 122, 126 |
| abstract_inverted_index.work | 59 |
| abstract_inverted_index.above | 124 |
| abstract_inverted_index.based | 45 |
| abstract_inverted_index.model | 39 |
| abstract_inverted_index.novel | 27 |
| abstract_inverted_index.three | 100 |
| abstract_inverted_index.using | 99 |
| abstract_inverted_index.which | 104 |
| abstract_inverted_index.Device | 0 |
| abstract_inverted_index.device | 32, 68, 79 |
| abstract_inverted_index.gained | 129 |
| abstract_inverted_index.method | 50, 93 |
| abstract_inverted_index.public | 101 |
| abstract_inverted_index.recent | 96 |
| abstract_inverted_index.secure | 6 |
| abstract_inverted_index.Through | 112 |
| abstract_inverted_index.against | 94 |
| abstract_inverted_index.contain | 106 |
| abstract_inverted_index.dealing | 65 |
| abstract_inverted_index.devices | 13, 44 |
| abstract_inverted_index.enhance | 78 |
| abstract_inverted_index.further | 74 |
| abstract_inverted_index.machine | 36 |
| abstract_inverted_index.method, | 29 |
| abstract_inverted_index.methods | 98 |
| abstract_inverted_index.network | 8, 47 |
| abstract_inverted_index.provide | 87 |
| abstract_inverted_index.results | 121 |
| abstract_inverted_index.whereby | 12 |
| abstract_inverted_index.approach | 63 |
| abstract_inverted_index.datasets | 103 |
| abstract_inverted_index.devices, | 11 |
| abstract_inverted_index.devices. | 111 |
| abstract_inverted_index.enhanced | 53 |
| abstract_inverted_index.features | 56 |
| abstract_inverted_index.improved | 117 |
| abstract_inverted_index.includes | 61 |
| abstract_inverted_index.isolated | 20 |
| abstract_inverted_index.learning | 37 |
| abstract_inverted_index.network. | 23 |
| abstract_inverted_index.packets. | 48 |
| abstract_inverted_index.previous | 58, 120 |
| abstract_inverted_index.together | 105 |
| abstract_inverted_index.F1-scores | 123 |
| abstract_inverted_index.IoTDevID, | 30 |
| abstract_inverted_index.behaviour | 41 |
| abstract_inverted_index.introduce | 25 |
| abstract_inverted_index.evaluation | 90, 114 |
| abstract_inverted_index.group-wise | 83 |
| abstract_inverted_index.identified | 14 |
| abstract_inverted_index.suspicious | 16 |
| abstract_inverted_index.unbalanced | 67 |
| abstract_inverted_index.combination | 54 |
| abstract_inverted_index.comparative | 89 |
| abstract_inverted_index.demonstrate | 75, 116 |
| abstract_inverted_index.improvement | 128 |
| abstract_inverted_index.performance | 118 |
| abstract_inverted_index.aggregation. | 85, 132 |
| abstract_inverted_index.considerable | 127 |
| abstract_inverted_index.subsequently | 18 |
| abstract_inverted_index.augmentation. | 72 |
| abstract_inverted_index.fingerprinting | 28 |
| abstract_inverted_index.identification | 1, 33, 80, 97 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 3 |
| citation_normalized_percentile |