IoTGeM: Generalizable Models for Behaviour-Based IoT Attack Detection Article Swipe
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2401.01343
Previous research on behavior-based attack detection for networks of IoT devices has resulted in machine learning models whose ability to adapt to unseen data is limited and often not demonstrated. This paper presents IoTGeM, an approach for modeling IoT network attacks that focuses on generalizability, yet also leads to better detection and performance. We first introduce an improved rolling window approach for feature extraction. To reduce overfitting, we then apply a multi-step feature selection process where a Genetic Algorithm (GA) is uniquely guided by exogenous feedback from a separate, independent dataset. To prevent common data leaks that have limited previous models, we build and test our models using strictly isolated train and test datasets. The resulting models are rigorously evaluated using a diverse portfolio of machine learning algorithms and datasets. Our window-based models demonstrate superior generalization compared to traditional flow-based models, particularly when tested on unseen datasets. On these stringent, cross-dataset tests, IoTGeM achieves F1 scores of 99\% for ACK, HTTP, SYN, MHD, and PS attacks, as well as a 94\% F1 score for UDP attacks. Finally, we build confidence in the models by using the SHAP (SHapley Additive exPlanations) explainable AI technique, allowing us to identify the specific features that underlie the accurate detection of attacks.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2401.01343
- https://arxiv.org/pdf/2401.01343
- OA Status
- green
- Cited By
- 4
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4390602559
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4390602559Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2401.01343Digital Object Identifier
- Title
-
IoTGeM: Generalizable Models for Behaviour-Based IoT Attack DetectionWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-10-17Full publication date if available
- Authors
-
Kahraman Kostas, Mike Just, Michael A. LonesList of authors in order
- Landing page
-
https://arxiv.org/abs/2401.01343Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2401.01343Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2401.01343Direct OA link when available
- Concepts
-
Overfitting, Generalizability theory, Computer science, Machine learning, Artificial intelligence, Process (computing), Feature selection, Feature (linguistics), Selection (genetic algorithm), Data mining, Portfolio, Artificial neural network, Financial economics, Linguistics, Mathematics, Philosophy, Economics, Operating system, StatisticsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
4Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 2, 2024: 2Per-year citation counts (last 5 years)
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4390602559 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2401.01343 |
| ids.doi | https://doi.org/10.48550/arxiv.2401.01343 |
| ids.openalex | https://openalex.org/W4390602559 |
| fwci | |
| type | preprint |
| title | IoTGeM: Generalizable Models for Behaviour-Based IoT Attack Detection |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10400 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9997000098228455 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1705 |
| topics[0].subfield.display_name | Computer Networks and Communications |
| topics[0].display_name | Network Security and Intrusion Detection |
| topics[1].id | https://openalex.org/T11512 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9997000098228455 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | Anomaly Detection Techniques and Applications |
| topics[2].id | https://openalex.org/T11241 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9861000180244446 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1711 |
| topics[2].subfield.display_name | Signal Processing |
| topics[2].display_name | Advanced Malware Detection Techniques |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C22019652 |
| concepts[0].level | 3 |
| concepts[0].score | 0.96234130859375 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q331309 |
| concepts[0].display_name | Overfitting |
| concepts[1].id | https://openalex.org/C27158222 |
| concepts[1].level | 2 |
| concepts[1].score | 0.8742973804473877 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q5532422 |
| concepts[1].display_name | Generalizability theory |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.8293431997299194 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| concepts[3].id | https://openalex.org/C119857082 |
| concepts[3].level | 1 |
| concepts[3].score | 0.694184422492981 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[3].display_name | Machine learning |
| concepts[4].id | https://openalex.org/C154945302 |
| concepts[4].level | 1 |
| concepts[4].score | 0.6494787335395813 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[4].display_name | Artificial intelligence |
| concepts[5].id | https://openalex.org/C98045186 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5817521810531616 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q205663 |
| concepts[5].display_name | Process (computing) |
| concepts[6].id | https://openalex.org/C148483581 |
| concepts[6].level | 2 |
| concepts[6].score | 0.5601250529289246 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q446488 |
| concepts[6].display_name | Feature selection |
| concepts[7].id | https://openalex.org/C2776401178 |
| concepts[7].level | 2 |
| concepts[7].score | 0.49111244082450867 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q12050496 |
| concepts[7].display_name | Feature (linguistics) |
| concepts[8].id | https://openalex.org/C81917197 |
| concepts[8].level | 2 |
| concepts[8].score | 0.45701152086257935 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q628760 |
| concepts[8].display_name | Selection (genetic algorithm) |
| concepts[9].id | https://openalex.org/C124101348 |
| concepts[9].level | 1 |
| concepts[9].score | 0.42523714900016785 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q172491 |
| concepts[9].display_name | Data mining |
| concepts[10].id | https://openalex.org/C2780821815 |
| concepts[10].level | 2 |
| concepts[10].score | 0.4180886745452881 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q5340806 |
| concepts[10].display_name | Portfolio |
| concepts[11].id | https://openalex.org/C50644808 |
| concepts[11].level | 2 |
| concepts[11].score | 0.2472676932811737 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q192776 |
| concepts[11].display_name | Artificial neural network |
| concepts[12].id | https://openalex.org/C106159729 |
| concepts[12].level | 1 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q2294553 |
| concepts[12].display_name | Financial economics |
| concepts[13].id | https://openalex.org/C41895202 |
| concepts[13].level | 1 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q8162 |
| concepts[13].display_name | Linguistics |
| concepts[14].id | https://openalex.org/C33923547 |
| concepts[14].level | 0 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[14].display_name | Mathematics |
| concepts[15].id | https://openalex.org/C138885662 |
| concepts[15].level | 0 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q5891 |
| concepts[15].display_name | Philosophy |
| concepts[16].id | https://openalex.org/C162324750 |
| concepts[16].level | 0 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q8134 |
| concepts[16].display_name | Economics |
| concepts[17].id | https://openalex.org/C111919701 |
| concepts[17].level | 1 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q9135 |
| concepts[17].display_name | Operating system |
| concepts[18].id | https://openalex.org/C105795698 |
| concepts[18].level | 1 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[18].display_name | Statistics |
| keywords[0].id | https://openalex.org/keywords/overfitting |
| keywords[0].score | 0.96234130859375 |
| keywords[0].display_name | Overfitting |
| keywords[1].id | https://openalex.org/keywords/generalizability-theory |
| keywords[1].score | 0.8742973804473877 |
| keywords[1].display_name | Generalizability theory |
| keywords[2].id | https://openalex.org/keywords/computer-science |
| keywords[2].score | 0.8293431997299194 |
| keywords[2].display_name | Computer science |
| keywords[3].id | https://openalex.org/keywords/machine-learning |
| keywords[3].score | 0.694184422492981 |
| keywords[3].display_name | Machine learning |
| keywords[4].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[4].score | 0.6494787335395813 |
| keywords[4].display_name | Artificial intelligence |
| keywords[5].id | https://openalex.org/keywords/process |
| keywords[5].score | 0.5817521810531616 |
| keywords[5].display_name | Process (computing) |
| keywords[6].id | https://openalex.org/keywords/feature-selection |
| keywords[6].score | 0.5601250529289246 |
| keywords[6].display_name | Feature selection |
| keywords[7].id | https://openalex.org/keywords/feature |
| keywords[7].score | 0.49111244082450867 |
| keywords[7].display_name | Feature (linguistics) |
| keywords[8].id | https://openalex.org/keywords/selection |
| keywords[8].score | 0.45701152086257935 |
| keywords[8].display_name | Selection (genetic algorithm) |
| keywords[9].id | https://openalex.org/keywords/data-mining |
| keywords[9].score | 0.42523714900016785 |
| keywords[9].display_name | Data mining |
| keywords[10].id | https://openalex.org/keywords/portfolio |
| keywords[10].score | 0.4180886745452881 |
| keywords[10].display_name | Portfolio |
| keywords[11].id | https://openalex.org/keywords/artificial-neural-network |
| keywords[11].score | 0.2472676932811737 |
| keywords[11].display_name | Artificial neural network |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2401.01343 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://arxiv.org/pdf/2401.01343 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2401.01343 |
| locations[1].id | doi:10.48550/arxiv.2401.01343 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | cc-by |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | https://openalex.org/licenses/cc-by |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2401.01343 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5058691307 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-4696-1857 |
| authorships[0].author.display_name | Kahraman Kostas |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Kostas, Kahraman |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5037048837 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-9669-5067 |
| authorships[1].author.display_name | Mike Just |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Just, Mike |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5049325379 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-2745-9896 |
| authorships[2].author.display_name | Michael A. Lones |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Lones, Michael A. |
| authorships[2].is_corresponding | False |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2401.01343 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | IoTGeM: Generalizable Models for Behaviour-Based IoT Attack Detection |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10400 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9997000098228455 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1705 |
| primary_topic.subfield.display_name | Computer Networks and Communications |
| primary_topic.display_name | Network Security and Intrusion Detection |
| related_works | https://openalex.org/W4362597605, https://openalex.org/W1574414179, https://openalex.org/W4220972140, https://openalex.org/W3161120485, https://openalex.org/W4295122168, https://openalex.org/W3155717344, https://openalex.org/W1770458422, https://openalex.org/W2137209757, https://openalex.org/W4386564352, https://openalex.org/W2952668426 |
| cited_by_count | 4 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 2 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 2 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2401.01343 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2401.01343 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2401.01343 |
| primary_location.id | pmh:oai:arXiv.org:2401.01343 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://arxiv.org/pdf/2401.01343 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2401.01343 |
| publication_date | 2023-10-17 |
| publication_year | 2023 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 70, 76, 87, 121, 169 |
| abstract_inverted_index.AI | 191 |
| abstract_inverted_index.F1 | 154, 171 |
| abstract_inverted_index.On | 147 |
| abstract_inverted_index.PS | 164 |
| abstract_inverted_index.To | 64, 91 |
| abstract_inverted_index.We | 53 |
| abstract_inverted_index.an | 34, 56 |
| abstract_inverted_index.as | 166, 168 |
| abstract_inverted_index.by | 83, 183 |
| abstract_inverted_index.in | 13, 180 |
| abstract_inverted_index.is | 24, 80 |
| abstract_inverted_index.of | 8, 124, 156, 205 |
| abstract_inverted_index.on | 2, 43, 144 |
| abstract_inverted_index.to | 19, 21, 48, 137, 195 |
| abstract_inverted_index.us | 194 |
| abstract_inverted_index.we | 67, 101, 177 |
| abstract_inverted_index.IoT | 9, 38 |
| abstract_inverted_index.Our | 130 |
| abstract_inverted_index.The | 114 |
| abstract_inverted_index.UDP | 174 |
| abstract_inverted_index.and | 26, 51, 103, 111, 128, 163 |
| abstract_inverted_index.are | 117 |
| abstract_inverted_index.for | 6, 36, 61, 158, 173 |
| abstract_inverted_index.has | 11 |
| abstract_inverted_index.not | 28 |
| abstract_inverted_index.our | 105 |
| abstract_inverted_index.the | 181, 185, 197, 202 |
| abstract_inverted_index.yet | 45 |
| abstract_inverted_index.(GA) | 79 |
| abstract_inverted_index.94\% | 170 |
| abstract_inverted_index.99\% | 157 |
| abstract_inverted_index.ACK, | 159 |
| abstract_inverted_index.MHD, | 162 |
| abstract_inverted_index.SHAP | 186 |
| abstract_inverted_index.SYN, | 161 |
| abstract_inverted_index.This | 30 |
| abstract_inverted_index.also | 46 |
| abstract_inverted_index.data | 23, 94 |
| abstract_inverted_index.from | 86 |
| abstract_inverted_index.have | 97 |
| abstract_inverted_index.test | 104, 112 |
| abstract_inverted_index.that | 41, 96, 200 |
| abstract_inverted_index.then | 68 |
| abstract_inverted_index.well | 167 |
| abstract_inverted_index.when | 142 |
| abstract_inverted_index.HTTP, | 160 |
| abstract_inverted_index.adapt | 20 |
| abstract_inverted_index.apply | 69 |
| abstract_inverted_index.build | 102, 178 |
| abstract_inverted_index.first | 54 |
| abstract_inverted_index.leads | 47 |
| abstract_inverted_index.leaks | 95 |
| abstract_inverted_index.often | 27 |
| abstract_inverted_index.paper | 31 |
| abstract_inverted_index.score | 172 |
| abstract_inverted_index.these | 148 |
| abstract_inverted_index.train | 110 |
| abstract_inverted_index.using | 107, 120, 184 |
| abstract_inverted_index.where | 75 |
| abstract_inverted_index.whose | 17 |
| abstract_inverted_index.IoTGeM | 152 |
| abstract_inverted_index.attack | 4 |
| abstract_inverted_index.better | 49 |
| abstract_inverted_index.common | 93 |
| abstract_inverted_index.guided | 82 |
| abstract_inverted_index.models | 16, 106, 116, 132, 182 |
| abstract_inverted_index.reduce | 65 |
| abstract_inverted_index.scores | 155 |
| abstract_inverted_index.tested | 143 |
| abstract_inverted_index.tests, | 151 |
| abstract_inverted_index.unseen | 22, 145 |
| abstract_inverted_index.window | 59 |
| abstract_inverted_index.Genetic | 77 |
| abstract_inverted_index.IoTGeM, | 33 |
| abstract_inverted_index.ability | 18 |
| abstract_inverted_index.attacks | 40 |
| abstract_inverted_index.devices | 10 |
| abstract_inverted_index.diverse | 122 |
| abstract_inverted_index.feature | 62, 72 |
| abstract_inverted_index.focuses | 42 |
| abstract_inverted_index.limited | 25, 98 |
| abstract_inverted_index.machine | 14, 125 |
| abstract_inverted_index.models, | 100, 140 |
| abstract_inverted_index.network | 39 |
| abstract_inverted_index.prevent | 92 |
| abstract_inverted_index.process | 74 |
| abstract_inverted_index.rolling | 58 |
| abstract_inverted_index.(SHapley | 187 |
| abstract_inverted_index.Additive | 188 |
| abstract_inverted_index.Finally, | 176 |
| abstract_inverted_index.Previous | 0 |
| abstract_inverted_index.accurate | 203 |
| abstract_inverted_index.achieves | 153 |
| abstract_inverted_index.allowing | 193 |
| abstract_inverted_index.approach | 35, 60 |
| abstract_inverted_index.attacks, | 165 |
| abstract_inverted_index.attacks. | 175, 206 |
| abstract_inverted_index.compared | 136 |
| abstract_inverted_index.dataset. | 90 |
| abstract_inverted_index.features | 199 |
| abstract_inverted_index.feedback | 85 |
| abstract_inverted_index.identify | 196 |
| abstract_inverted_index.improved | 57 |
| abstract_inverted_index.isolated | 109 |
| abstract_inverted_index.learning | 15, 126 |
| abstract_inverted_index.modeling | 37 |
| abstract_inverted_index.networks | 7 |
| abstract_inverted_index.presents | 32 |
| abstract_inverted_index.previous | 99 |
| abstract_inverted_index.research | 1 |
| abstract_inverted_index.resulted | 12 |
| abstract_inverted_index.specific | 198 |
| abstract_inverted_index.strictly | 108 |
| abstract_inverted_index.superior | 134 |
| abstract_inverted_index.underlie | 201 |
| abstract_inverted_index.uniquely | 81 |
| abstract_inverted_index.Algorithm | 78 |
| abstract_inverted_index.datasets. | 113, 129, 146 |
| abstract_inverted_index.detection | 5, 50, 204 |
| abstract_inverted_index.evaluated | 119 |
| abstract_inverted_index.exogenous | 84 |
| abstract_inverted_index.introduce | 55 |
| abstract_inverted_index.portfolio | 123 |
| abstract_inverted_index.resulting | 115 |
| abstract_inverted_index.selection | 73 |
| abstract_inverted_index.separate, | 88 |
| abstract_inverted_index.algorithms | 127 |
| abstract_inverted_index.confidence | 179 |
| abstract_inverted_index.flow-based | 139 |
| abstract_inverted_index.multi-step | 71 |
| abstract_inverted_index.rigorously | 118 |
| abstract_inverted_index.stringent, | 149 |
| abstract_inverted_index.technique, | 192 |
| abstract_inverted_index.demonstrate | 133 |
| abstract_inverted_index.explainable | 190 |
| abstract_inverted_index.extraction. | 63 |
| abstract_inverted_index.independent | 89 |
| abstract_inverted_index.traditional | 138 |
| abstract_inverted_index.overfitting, | 66 |
| abstract_inverted_index.particularly | 141 |
| abstract_inverted_index.performance. | 52 |
| abstract_inverted_index.window-based | 131 |
| abstract_inverted_index.cross-dataset | 150 |
| abstract_inverted_index.demonstrated. | 29 |
| abstract_inverted_index.exPlanations) | 189 |
| abstract_inverted_index.behavior-based | 3 |
| abstract_inverted_index.generalization | 135 |
| abstract_inverted_index.generalizability, | 44 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 3 |
| citation_normalized_percentile |