Irrigation timing retrieval at the plot scale using Surface Soil Moisture derived from Sentinel time series in Europe Article Swipe
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.5194/egusphere-egu23-6597
The computation of the water budget of irrigated fields is generally difficult because of unknown irrigation amounts and timing. Automatic detection of irrigation events could greatly simplify the water balance of irrigated fields. The combination of high spatial resolution and high-frequency SAR (Sentinel-1) and optical satellite observations (Sentinel-2) makes the detection of irrigation events potentially feasible. Indeed, optical observation allows following the crop development while SAR observation can provide an estimation of the Surface Soil Moisture (SSM). However, uncertainties due to acquisition configuration or crop geometry and density might affect the retrieval of SSM. Here, an algorithm for irrigation events detection is assessed considering several aspects that could affect SSM retrieval (incidence angle, crop type, crop development) and specific characteristics of irrigation events (irrigation frequency, frequency of observations). Additionally, an alternative soil water budget model, the force-restore approach, is compared with the original bucket soil water budget algorithm. A European dataset of irrigation events collected during the ESA Irrigation+ project (5 sites in France, Germany, and Italy over three years) is used. The performances are analyzed in terms of the F‑score and the seasonal sum of irrigation. Overall, the analysis corroborated that the scores decrease with SSM observation frequency. The impact of the Sentinel-1 configuration (ascending/descending, close to 39°/far from 39°) on the retrieval results is low. The lower scores obtained with small NDVI compared to large NDVI were almost systematic, which is counter-intuitive, but might have been due to the larger number of irrigation events during high vegetation periods. The scores decreased as irrigation frequency increased, which was substantiated by the fact that the scores were better in France (more sprinkler irrigation) than in Germany (more localized irrigation). The strategy of merging different runs versus the strategy of interpolating all SSM data for one run has produced comparable results. The estimated cumulative sum of irrigation was around -20% lower compared to the reference dataset in the best cases. Finally, the replacement of the original SSM model by the Force-restore provided an improvement of about 6% on the F‑score, and also narrowed the error on cumulative seasonal irrigation. This study opens new perspectives for the advancement of irrigation retrieval at large scale based on SSM data sets through an in-depth analysis of results as a function of satellite configuration, irrigation techniques, and crops.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- https://doi.org/10.5194/egusphere-egu23-6597
- OA Status
- gold
- Cited By
- 2
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4322007222
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4322007222Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.5194/egusphere-egu23-6597Digital Object Identifier
- Title
-
Irrigation timing retrieval at the plot scale using Surface Soil Moisture derived from Sentinel time series in EuropeWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-02-25Full publication date if available
- Authors
-
Michel Le Page, Thang Nguyen, Mehrez Zribi, Aaron Boone, Jacopo Dari, Sara Modanesi, Luca Zappa, Nadia Ouaadi, Lionel JarlanList of authors in order
- Landing page
-
https://doi.org/10.5194/egusphere-egu23-6597Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.5194/egusphere-egu23-6597Direct OA link when available
- Concepts
-
Irrigation, Water content, Environmental science, Irrigation scheduling, Remote sensing, Soil water, Agricultural engineering, Soil science, Agronomy, Geography, Geology, Engineering, Biology, Geotechnical engineeringTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
2Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1, 2023: 1Per-year citation counts (last 5 years)
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4322007222 |
|---|---|
| doi | https://doi.org/10.5194/egusphere-egu23-6597 |
| ids.doi | https://doi.org/10.5194/egusphere-egu23-6597 |
| ids.openalex | https://openalex.org/W4322007222 |
| fwci | 0.32776405 |
| type | preprint |
| title | Irrigation timing retrieval at the plot scale using Surface Soil Moisture derived from Sentinel time series in Europe |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11312 |
| topics[0].field.id | https://openalex.org/fields/23 |
| topics[0].field.display_name | Environmental Science |
| topics[0].score | 0.996999979019165 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2305 |
| topics[0].subfield.display_name | Environmental Engineering |
| topics[0].display_name | Soil Moisture and Remote Sensing |
| topics[1].id | https://openalex.org/T11404 |
| topics[1].field.id | https://openalex.org/fields/11 |
| topics[1].field.display_name | Agricultural and Biological Sciences |
| topics[1].score | 0.9962999820709229 |
| topics[1].domain.id | https://openalex.org/domains/1 |
| topics[1].domain.display_name | Life Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1111 |
| topics[1].subfield.display_name | Soil Science |
| topics[1].display_name | Irrigation Practices and Water Management |
| topics[2].id | https://openalex.org/T10889 |
| topics[2].field.id | https://openalex.org/fields/11 |
| topics[2].field.display_name | Agricultural and Biological Sciences |
| topics[2].score | 0.9951000213623047 |
| topics[2].domain.id | https://openalex.org/domains/1 |
| topics[2].domain.display_name | Life Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1111 |
| topics[2].subfield.display_name | Soil Science |
| topics[2].display_name | Soil erosion and sediment transport |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C88862950 |
| concepts[0].level | 2 |
| concepts[0].score | 0.8440073728561401 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q11453 |
| concepts[0].display_name | Irrigation |
| concepts[1].id | https://openalex.org/C24939127 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6583971381187439 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q373499 |
| concepts[1].display_name | Water content |
| concepts[2].id | https://openalex.org/C39432304 |
| concepts[2].level | 0 |
| concepts[2].score | 0.597100019454956 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q188847 |
| concepts[2].display_name | Environmental science |
| concepts[3].id | https://openalex.org/C2777589951 |
| concepts[3].level | 3 |
| concepts[3].score | 0.5321639776229858 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q6073845 |
| concepts[3].display_name | Irrigation scheduling |
| concepts[4].id | https://openalex.org/C62649853 |
| concepts[4].level | 1 |
| concepts[4].score | 0.5271822214126587 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q199687 |
| concepts[4].display_name | Remote sensing |
| concepts[5].id | https://openalex.org/C159750122 |
| concepts[5].level | 2 |
| concepts[5].score | 0.4093985855579376 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q96621023 |
| concepts[5].display_name | Soil water |
| concepts[6].id | https://openalex.org/C88463610 |
| concepts[6].level | 1 |
| concepts[6].score | 0.32535117864608765 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q194118 |
| concepts[6].display_name | Agricultural engineering |
| concepts[7].id | https://openalex.org/C159390177 |
| concepts[7].level | 1 |
| concepts[7].score | 0.25799211859703064 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q9161265 |
| concepts[7].display_name | Soil science |
| concepts[8].id | https://openalex.org/C6557445 |
| concepts[8].level | 1 |
| concepts[8].score | 0.13831892609596252 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q173113 |
| concepts[8].display_name | Agronomy |
| concepts[9].id | https://openalex.org/C205649164 |
| concepts[9].level | 0 |
| concepts[9].score | 0.11879506707191467 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q1071 |
| concepts[9].display_name | Geography |
| concepts[10].id | https://openalex.org/C127313418 |
| concepts[10].level | 0 |
| concepts[10].score | 0.0983385443687439 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q1069 |
| concepts[10].display_name | Geology |
| concepts[11].id | https://openalex.org/C127413603 |
| concepts[11].level | 0 |
| concepts[11].score | 0.06535983085632324 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q11023 |
| concepts[11].display_name | Engineering |
| concepts[12].id | https://openalex.org/C86803240 |
| concepts[12].level | 0 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q420 |
| concepts[12].display_name | Biology |
| concepts[13].id | https://openalex.org/C187320778 |
| concepts[13].level | 1 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q1349130 |
| concepts[13].display_name | Geotechnical engineering |
| keywords[0].id | https://openalex.org/keywords/irrigation |
| keywords[0].score | 0.8440073728561401 |
| keywords[0].display_name | Irrigation |
| keywords[1].id | https://openalex.org/keywords/water-content |
| keywords[1].score | 0.6583971381187439 |
| keywords[1].display_name | Water content |
| keywords[2].id | https://openalex.org/keywords/environmental-science |
| keywords[2].score | 0.597100019454956 |
| keywords[2].display_name | Environmental science |
| keywords[3].id | https://openalex.org/keywords/irrigation-scheduling |
| keywords[3].score | 0.5321639776229858 |
| keywords[3].display_name | Irrigation scheduling |
| keywords[4].id | https://openalex.org/keywords/remote-sensing |
| keywords[4].score | 0.5271822214126587 |
| keywords[4].display_name | Remote sensing |
| keywords[5].id | https://openalex.org/keywords/soil-water |
| keywords[5].score | 0.4093985855579376 |
| keywords[5].display_name | Soil water |
| keywords[6].id | https://openalex.org/keywords/agricultural-engineering |
| keywords[6].score | 0.32535117864608765 |
| keywords[6].display_name | Agricultural engineering |
| keywords[7].id | https://openalex.org/keywords/soil-science |
| keywords[7].score | 0.25799211859703064 |
| keywords[7].display_name | Soil science |
| keywords[8].id | https://openalex.org/keywords/agronomy |
| keywords[8].score | 0.13831892609596252 |
| keywords[8].display_name | Agronomy |
| keywords[9].id | https://openalex.org/keywords/geography |
| keywords[9].score | 0.11879506707191467 |
| keywords[9].display_name | Geography |
| keywords[10].id | https://openalex.org/keywords/geology |
| keywords[10].score | 0.0983385443687439 |
| keywords[10].display_name | Geology |
| keywords[11].id | https://openalex.org/keywords/engineering |
| keywords[11].score | 0.06535983085632324 |
| keywords[11].display_name | Engineering |
| language | en |
| locations[0].id | doi:10.5194/egusphere-egu23-6597 |
| locations[0].is_oa | True |
| locations[0].source | |
| locations[0].license | cc-by |
| locations[0].pdf_url | |
| locations[0].version | acceptedVersion |
| locations[0].raw_type | posted-content |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | https://doi.org/10.5194/egusphere-egu23-6597 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5091649231 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-0671-2418 |
| authorships[0].author.display_name | Michel Le Page |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Michel Le Page |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5102076912 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-6814-4885 |
| authorships[1].author.display_name | Thang Nguyen |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Thang Nguyen |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5028242808 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-6141-8222 |
| authorships[2].author.display_name | Mehrez Zribi |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Mehrez Zribi |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5057966139 |
| authorships[3].author.orcid | https://orcid.org/0000-0003-1901-7024 |
| authorships[3].author.display_name | Aaron Boone |
| authorships[3].countries | FR |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I1294671590, https://openalex.org/I17866349, https://openalex.org/I4210113730 |
| authorships[3].affiliations[0].raw_affiliation_string | CNRM - Université de Toulouse, Météo-France/CNRS |
| authorships[3].institutions[0].id | https://openalex.org/I1294671590 |
| authorships[3].institutions[0].ror | https://ror.org/02feahw73 |
| authorships[3].institutions[0].type | government |
| authorships[3].institutions[0].lineage | https://openalex.org/I1294671590 |
| authorships[3].institutions[0].country_code | FR |
| authorships[3].institutions[0].display_name | Centre National de la Recherche Scientifique |
| authorships[3].institutions[1].id | https://openalex.org/I4210113730 |
| authorships[3].institutions[1].ror | https://ror.org/0233st365 |
| authorships[3].institutions[1].type | other |
| authorships[3].institutions[1].lineage | https://openalex.org/I4210113730 |
| authorships[3].institutions[1].country_code | FR |
| authorships[3].institutions[1].display_name | Météo-France |
| authorships[3].institutions[2].id | https://openalex.org/I17866349 |
| authorships[3].institutions[2].ror | https://ror.org/004raaa70 |
| authorships[3].institutions[2].type | education |
| authorships[3].institutions[2].lineage | https://openalex.org/I17866349 |
| authorships[3].institutions[2].country_code | FR |
| authorships[3].institutions[2].display_name | Université Fédérale de Toulouse Midi-Pyrénées |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Aaron Boone |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | CNRM - Université de Toulouse, Météo-France/CNRS |
| authorships[4].author.id | https://openalex.org/A5045429796 |
| authorships[4].author.orcid | https://orcid.org/0000-0003-2740-5270 |
| authorships[4].author.display_name | Jacopo Dari |
| authorships[4].countries | IT |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I27483092 |
| authorships[4].affiliations[0].raw_affiliation_string | University of Perugia, Department of Civil and Environmental Engineering |
| authorships[4].institutions[0].id | https://openalex.org/I27483092 |
| authorships[4].institutions[0].ror | https://ror.org/00x27da85 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I27483092 |
| authorships[4].institutions[0].country_code | IT |
| authorships[4].institutions[0].display_name | University of Perugia |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Jacopo Dari |
| authorships[4].is_corresponding | True |
| authorships[4].raw_affiliation_strings | University of Perugia, Department of Civil and Environmental Engineering |
| authorships[5].author.id | https://openalex.org/A5033258072 |
| authorships[5].author.orcid | https://orcid.org/0000-0003-4720-5233 |
| authorships[5].author.display_name | Sara Modanesi |
| authorships[5].countries | IT, US |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I197604219, https://openalex.org/I4210091655 |
| authorships[5].affiliations[0].raw_affiliation_string | Research Institute for Geo-Hydrological Protection, National Research Council |
| authorships[5].institutions[0].id | https://openalex.org/I4210091655 |
| authorships[5].institutions[0].ror | https://ror.org/0040zx077 |
| authorships[5].institutions[0].type | facility |
| authorships[5].institutions[0].lineage | https://openalex.org/I4210091655, https://openalex.org/I4210155236 |
| authorships[5].institutions[0].country_code | IT |
| authorships[5].institutions[0].display_name | Research Institute for Geo-Hydrological Protection |
| authorships[5].institutions[1].id | https://openalex.org/I197604219 |
| authorships[5].institutions[1].ror | https://ror.org/02eq2w707 |
| authorships[5].institutions[1].type | government |
| authorships[5].institutions[1].lineage | https://openalex.org/I197604219 |
| authorships[5].institutions[1].country_code | US |
| authorships[5].institutions[1].display_name | National Academies of Sciences, Engineering, and Medicine |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Sara Modanesi |
| authorships[5].is_corresponding | True |
| authorships[5].raw_affiliation_strings | Research Institute for Geo-Hydrological Protection, National Research Council |
| authorships[6].author.id | https://openalex.org/A5041505117 |
| authorships[6].author.orcid | https://orcid.org/0000-0002-0928-229X |
| authorships[6].author.display_name | Luca Zappa |
| authorships[6].countries | AT |
| authorships[6].affiliations[0].institution_ids | https://openalex.org/I145847075 |
| authorships[6].affiliations[0].raw_affiliation_string | Vienna University of Technology |
| authorships[6].institutions[0].id | https://openalex.org/I145847075 |
| authorships[6].institutions[0].ror | https://ror.org/04d836q62 |
| authorships[6].institutions[0].type | education |
| authorships[6].institutions[0].lineage | https://openalex.org/I145847075 |
| authorships[6].institutions[0].country_code | AT |
| authorships[6].institutions[0].display_name | TU Wien |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Luca Zappa |
| authorships[6].is_corresponding | True |
| authorships[6].raw_affiliation_strings | Vienna University of Technology |
| authorships[7].author.id | https://openalex.org/A5073035703 |
| authorships[7].author.orcid | https://orcid.org/0000-0003-3203-5278 |
| authorships[7].author.display_name | Nadia Ouaadi |
| authorships[7].author_position | middle |
| authorships[7].raw_author_name | Nadia Ouaadi |
| authorships[7].is_corresponding | False |
| authorships[8].author.id | https://openalex.org/A5019685499 |
| authorships[8].author.orcid | https://orcid.org/0000-0002-6542-5793 |
| authorships[8].author.display_name | Lionel Jarlan |
| authorships[8].author_position | last |
| authorships[8].raw_author_name | Lionel Jarlan |
| authorships[8].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.5194/egusphere-egu23-6597 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Irrigation timing retrieval at the plot scale using Surface Soil Moisture derived from Sentinel time series in Europe |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11312 |
| primary_topic.field.id | https://openalex.org/fields/23 |
| primary_topic.field.display_name | Environmental Science |
| primary_topic.score | 0.996999979019165 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2305 |
| primary_topic.subfield.display_name | Environmental Engineering |
| primary_topic.display_name | Soil Moisture and Remote Sensing |
| related_works | https://openalex.org/W2008804768, https://openalex.org/W3137023317, https://openalex.org/W2370315413, https://openalex.org/W2907727737, https://openalex.org/W2890436230, https://openalex.org/W3127674161, https://openalex.org/W1964035568, https://openalex.org/W4379055770, https://openalex.org/W2324646006, https://openalex.org/W2465080911 |
| cited_by_count | 2 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| counts_by_year[1].year | 2023 |
| counts_by_year[1].cited_by_count | 1 |
| locations_count | 1 |
| best_oa_location.id | doi:10.5194/egusphere-egu23-6597 |
| best_oa_location.is_oa | True |
| best_oa_location.source | |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | acceptedVersion |
| best_oa_location.raw_type | posted-content |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | https://doi.org/10.5194/egusphere-egu23-6597 |
| primary_location.id | doi:10.5194/egusphere-egu23-6597 |
| primary_location.is_oa | True |
| primary_location.source | |
| primary_location.license | cc-by |
| primary_location.pdf_url | |
| primary_location.version | acceptedVersion |
| primary_location.raw_type | posted-content |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | https://doi.org/10.5194/egusphere-egu23-6597 |
| publication_date | 2023-02-25 |
| publication_year | 2023 |
| referenced_works_count | 0 |
| abstract_inverted_index.A | 148 |
| abstract_inverted_index.a | 374 |
| abstract_inverted_index.(5 | 160 |
| abstract_inverted_index.6% | 335 |
| abstract_inverted_index.an | 69, 95, 129, 331, 368 |
| abstract_inverted_index.as | 253, 373 |
| abstract_inverted_index.at | 359 |
| abstract_inverted_index.by | 260, 327 |
| abstract_inverted_index.in | 162, 176, 268, 274, 315 |
| abstract_inverted_index.is | 9, 101, 138, 170, 215, 232 |
| abstract_inverted_index.of | 2, 6, 13, 21, 30, 35, 51, 71, 92, 120, 126, 151, 178, 185, 201, 243, 281, 288, 304, 322, 333, 356, 371, 376 |
| abstract_inverted_index.on | 211, 336, 344, 363 |
| abstract_inverted_index.or | 83 |
| abstract_inverted_index.to | 80, 207, 225, 239, 311 |
| abstract_inverted_index.ESA | 157 |
| abstract_inverted_index.SAR | 41, 65 |
| abstract_inverted_index.SSM | 109, 196, 291, 325, 364 |
| abstract_inverted_index.The | 0, 33, 172, 199, 217, 250, 279, 300 |
| abstract_inverted_index.all | 290 |
| abstract_inverted_index.and | 17, 39, 43, 86, 117, 165, 181, 339, 381 |
| abstract_inverted_index.are | 174 |
| abstract_inverted_index.but | 234 |
| abstract_inverted_index.can | 67 |
| abstract_inverted_index.due | 79, 238 |
| abstract_inverted_index.for | 97, 293, 353 |
| abstract_inverted_index.has | 296 |
| abstract_inverted_index.new | 351 |
| abstract_inverted_index.one | 294 |
| abstract_inverted_index.run | 295 |
| abstract_inverted_index.sum | 184, 303 |
| abstract_inverted_index.the | 3, 27, 49, 61, 72, 90, 135, 141, 156, 179, 182, 188, 192, 202, 212, 240, 261, 264, 286, 312, 316, 320, 323, 328, 337, 342, 354 |
| abstract_inverted_index.was | 258, 306 |
| abstract_inverted_index.-20% | 308 |
| abstract_inverted_index.NDVI | 223, 227 |
| abstract_inverted_index.SSM. | 93 |
| abstract_inverted_index.Soil | 74 |
| abstract_inverted_index.This | 348 |
| abstract_inverted_index.also | 340 |
| abstract_inverted_index.been | 237 |
| abstract_inverted_index.best | 317 |
| abstract_inverted_index.crop | 62, 84, 113, 115 |
| abstract_inverted_index.data | 292, 365 |
| abstract_inverted_index.fact | 262 |
| abstract_inverted_index.from | 209 |
| abstract_inverted_index.have | 236 |
| abstract_inverted_index.high | 36, 247 |
| abstract_inverted_index.low. | 216 |
| abstract_inverted_index.over | 167 |
| abstract_inverted_index.runs | 284 |
| abstract_inverted_index.sets | 366 |
| abstract_inverted_index.soil | 131, 144 |
| abstract_inverted_index.than | 273 |
| abstract_inverted_index.that | 106, 191, 263 |
| abstract_inverted_index.were | 228, 266 |
| abstract_inverted_index.with | 140, 195, 221 |
| abstract_inverted_index.(more | 270, 276 |
| abstract_inverted_index.Here, | 94 |
| abstract_inverted_index.Italy | 166 |
| abstract_inverted_index.about | 334 |
| abstract_inverted_index.based | 362 |
| abstract_inverted_index.close | 206 |
| abstract_inverted_index.could | 24, 107 |
| abstract_inverted_index.error | 343 |
| abstract_inverted_index.large | 226, 360 |
| abstract_inverted_index.lower | 218, 309 |
| abstract_inverted_index.makes | 48 |
| abstract_inverted_index.might | 88, 235 |
| abstract_inverted_index.model | 326 |
| abstract_inverted_index.opens | 350 |
| abstract_inverted_index.scale | 361 |
| abstract_inverted_index.sites | 161 |
| abstract_inverted_index.small | 222 |
| abstract_inverted_index.study | 349 |
| abstract_inverted_index.terms | 177 |
| abstract_inverted_index.three | 168 |
| abstract_inverted_index.type, | 114 |
| abstract_inverted_index.used. | 171 |
| abstract_inverted_index.water | 4, 28, 132, 145 |
| abstract_inverted_index.which | 231, 257 |
| abstract_inverted_index.while | 64 |
| abstract_inverted_index.(SSM). | 76 |
| abstract_inverted_index.France | 269 |
| abstract_inverted_index.affect | 89, 108 |
| abstract_inverted_index.allows | 59 |
| abstract_inverted_index.almost | 229 |
| abstract_inverted_index.angle, | 112 |
| abstract_inverted_index.around | 307 |
| abstract_inverted_index.better | 267 |
| abstract_inverted_index.bucket | 143 |
| abstract_inverted_index.budget | 5, 133, 146 |
| abstract_inverted_index.cases. | 318 |
| abstract_inverted_index.crops. | 382 |
| abstract_inverted_index.during | 155, 246 |
| abstract_inverted_index.events | 23, 53, 99, 122, 153, 245 |
| abstract_inverted_index.fields | 8 |
| abstract_inverted_index.impact | 200 |
| abstract_inverted_index.larger | 241 |
| abstract_inverted_index.model, | 134 |
| abstract_inverted_index.number | 242 |
| abstract_inverted_index.scores | 193, 219, 251, 265 |
| abstract_inverted_index.versus | 285 |
| abstract_inverted_index.years) | 169 |
| abstract_inverted_index.France, | 163 |
| abstract_inverted_index.Germany | 275 |
| abstract_inverted_index.Indeed, | 56 |
| abstract_inverted_index.Surface | 73 |
| abstract_inverted_index.amounts | 16 |
| abstract_inverted_index.aspects | 105 |
| abstract_inverted_index.balance | 29 |
| abstract_inverted_index.because | 12 |
| abstract_inverted_index.dataset | 150, 314 |
| abstract_inverted_index.density | 87 |
| abstract_inverted_index.fields. | 32 |
| abstract_inverted_index.greatly | 25 |
| abstract_inverted_index.merging | 282 |
| abstract_inverted_index.optical | 44, 57 |
| abstract_inverted_index.project | 159 |
| abstract_inverted_index.provide | 68 |
| abstract_inverted_index.results | 214, 372 |
| abstract_inverted_index.several | 104 |
| abstract_inverted_index.spatial | 37 |
| abstract_inverted_index.through | 367 |
| abstract_inverted_index.timing. | 18 |
| abstract_inverted_index.unknown | 14 |
| abstract_inverted_index.European | 149 |
| abstract_inverted_index.Finally, | 319 |
| abstract_inverted_index.Germany, | 164 |
| abstract_inverted_index.However, | 77 |
| abstract_inverted_index.Moisture | 75 |
| abstract_inverted_index.Overall, | 187 |
| abstract_inverted_index.analysis | 189, 370 |
| abstract_inverted_index.analyzed | 175 |
| abstract_inverted_index.assessed | 102 |
| abstract_inverted_index.compared | 139, 224, 310 |
| abstract_inverted_index.decrease | 194 |
| abstract_inverted_index.function | 375 |
| abstract_inverted_index.geometry | 85 |
| abstract_inverted_index.in-depth | 369 |
| abstract_inverted_index.narrowed | 341 |
| abstract_inverted_index.obtained | 220 |
| abstract_inverted_index.original | 142, 324 |
| abstract_inverted_index.periods. | 249 |
| abstract_inverted_index.produced | 297 |
| abstract_inverted_index.provided | 330 |
| abstract_inverted_index.results. | 299 |
| abstract_inverted_index.seasonal | 183, 346 |
| abstract_inverted_index.simplify | 26 |
| abstract_inverted_index.specific | 118 |
| abstract_inverted_index.strategy | 280, 287 |
| abstract_inverted_index.Automatic | 19 |
| abstract_inverted_index.algorithm | 96 |
| abstract_inverted_index.approach, | 137 |
| abstract_inverted_index.collected | 154 |
| abstract_inverted_index.decreased | 252 |
| abstract_inverted_index.detection | 20, 50, 100 |
| abstract_inverted_index.different | 283 |
| abstract_inverted_index.difficult | 11 |
| abstract_inverted_index.estimated | 301 |
| abstract_inverted_index.feasible. | 55 |
| abstract_inverted_index.following | 60 |
| abstract_inverted_index.frequency | 125, 255 |
| abstract_inverted_index.generally | 10 |
| abstract_inverted_index.irrigated | 7, 31 |
| abstract_inverted_index.localized | 277 |
| abstract_inverted_index.reference | 313 |
| abstract_inverted_index.retrieval | 91, 110, 213, 358 |
| abstract_inverted_index.satellite | 45, 377 |
| abstract_inverted_index.sprinkler | 271 |
| abstract_inverted_index.(incidence | 111 |
| abstract_inverted_index.Sentinel-1 | 203 |
| abstract_inverted_index.algorithm. | 147 |
| abstract_inverted_index.comparable | 298 |
| abstract_inverted_index.cumulative | 302, 345 |
| abstract_inverted_index.estimation | 70 |
| abstract_inverted_index.frequency, | 124 |
| abstract_inverted_index.frequency. | 198 |
| abstract_inverted_index.increased, | 256 |
| abstract_inverted_index.irrigation | 15, 22, 52, 98, 121, 152, 244, 254, 305, 357, 379 |
| abstract_inverted_index.resolution | 38 |
| abstract_inverted_index.vegetation | 248 |
| abstract_inverted_index.(irrigation | 123 |
| abstract_inverted_index.Irrigation+ | 158 |
| abstract_inverted_index.acquisition | 81 |
| abstract_inverted_index.advancement | 355 |
| abstract_inverted_index.alternative | 130 |
| abstract_inverted_index.combination | 34 |
| abstract_inverted_index.computation | 1 |
| abstract_inverted_index.considering | 103 |
| abstract_inverted_index.development | 63 |
| abstract_inverted_index.improvement | 332 |
| abstract_inverted_index.irrigation) | 272 |
| abstract_inverted_index.irrigation. | 186, 347 |
| abstract_inverted_index.observation | 58, 66, 197 |
| abstract_inverted_index.potentially | 54 |
| abstract_inverted_index.replacement | 321 |
| abstract_inverted_index.systematic, | 230 |
| abstract_inverted_index.techniques, | 380 |
| abstract_inverted_index.(Sentinel-1) | 42 |
| abstract_inverted_index.(Sentinel-2) | 47 |
| abstract_inverted_index.corroborated | 190 |
| abstract_inverted_index.development) | 116 |
| abstract_inverted_index.irrigation). | 278 |
| abstract_inverted_index.observations | 46 |
| abstract_inverted_index.performances | 173 |
| abstract_inverted_index.perspectives | 352 |
| abstract_inverted_index.39°) | 210 |
| abstract_inverted_index.Additionally, | 128 |
| abstract_inverted_index.Force-restore | 329 |
| abstract_inverted_index.configuration | 82, 204 |
| abstract_inverted_index.force-restore | 136 |
| abstract_inverted_index.interpolating | 289 |
| abstract_inverted_index.substantiated | 259 |
| abstract_inverted_index.uncertainties | 78 |
| abstract_inverted_index.configuration, | 378 |
| abstract_inverted_index.high-frequency | 40 |
| abstract_inverted_index.observations). | 127 |
| abstract_inverted_index.characteristics | 119 |
| abstract_inverted_index.39°/far | 208 |
| abstract_inverted_index.F‑score | 180 |
| abstract_inverted_index.F‑score, | 338 |
| abstract_inverted_index.counter-intuitive, | 233 |
| abstract_inverted_index.(ascending/descending, | 205 |
| cited_by_percentile_year.max | 95 |
| cited_by_percentile_year.min | 89 |
| corresponding_author_ids | https://openalex.org/A5033258072, https://openalex.org/A5045429796, https://openalex.org/A5041505117 |
| countries_distinct_count | 4 |
| institutions_distinct_count | 9 |
| corresponding_institution_ids | https://openalex.org/I145847075, https://openalex.org/I197604219, https://openalex.org/I27483092, https://openalex.org/I4210091655 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/6 |
| sustainable_development_goals[0].score | 0.6499999761581421 |
| sustainable_development_goals[0].display_name | Clean water and sanitation |
| citation_normalized_percentile.value | 0.50938261 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |