Is Parameter Collision Hindering Continual Learning in LLMs? Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2410.10179
Large Language Models (LLMs) often suffer from catastrophic forgetting when learning multiple tasks sequentially, making continual learning (CL) essential for their dynamic deployment. Existing state-of-the-art (SOTA) methods, such as O-LoRA, typically focus on constructing orthogonality tasks to decouple parameter interdependence from various domains.In this paper, we reveal that building non-collision parameters is a more critical factor in addressing CL challenges. Our theoretical and experimental analyses demonstrate that non-collision parameters can provide better task orthogonality, which is a sufficient but unnecessary condition. Furthermore, knowledge from multiple domains will be preserved in non-collision parameter subspaces, making it more difficult to forget previously seen data. Leveraging this insight, we propose Non-collision Low-Rank Adaptation (N-LoRA), a simple yet effective approach leveraging low collision rates to enhance CL in LLMs. Experimental results on multiple CL benchmarks indicate that N-LoRA achieves superior performance (+2.9), higher task orthogonality (*4.1 times), and lower parameter collision (*58.1 times) than SOTA methods.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2410.10179
- https://arxiv.org/pdf/2410.10179
- OA Status
- green
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4403580697
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4403580697Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2410.10179Digital Object Identifier
- Title
-
Is Parameter Collision Hindering Continual Learning in LLMs?Work title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-10-14Full publication date if available
- Authors
-
Shuo Yang, Kun-Peng Ning, Yuyang Liu, Jianfeng Yao, Y. Tian, Yanchen Song, Yuan LiList of authors in order
- Landing page
-
https://arxiv.org/abs/2410.10179Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2410.10179Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2410.10179Direct OA link when available
- Concepts
-
Collision, Economics, Computer science, Computer securityTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4403580697 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2410.10179 |
| ids.doi | https://doi.org/10.48550/arxiv.2410.10179 |
| ids.openalex | https://openalex.org/W4403580697 |
| fwci | |
| type | preprint |
| title | Is Parameter Collision Hindering Continual Learning in LLMs? |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11902 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.8521000146865845 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Intelligent Tutoring Systems and Adaptive Learning |
| topics[1].id | https://openalex.org/T14470 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.8391000032424927 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2207 |
| topics[1].subfield.display_name | Control and Systems Engineering |
| topics[1].display_name | Advanced Data Processing Techniques |
| topics[2].id | https://openalex.org/T10820 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.8184000253677368 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1702 |
| topics[2].subfield.display_name | Artificial Intelligence |
| topics[2].display_name | Fuzzy Logic and Control Systems |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C121704057 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7931212782859802 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q352070 |
| concepts[0].display_name | Collision |
| concepts[1].id | https://openalex.org/C162324750 |
| concepts[1].level | 0 |
| concepts[1].score | 0.3501591980457306 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q8134 |
| concepts[1].display_name | Economics |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.25083106756210327 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| concepts[3].id | https://openalex.org/C38652104 |
| concepts[3].level | 1 |
| concepts[3].score | 0.20118668675422668 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q3510521 |
| concepts[3].display_name | Computer security |
| keywords[0].id | https://openalex.org/keywords/collision |
| keywords[0].score | 0.7931212782859802 |
| keywords[0].display_name | Collision |
| keywords[1].id | https://openalex.org/keywords/economics |
| keywords[1].score | 0.3501591980457306 |
| keywords[1].display_name | Economics |
| keywords[2].id | https://openalex.org/keywords/computer-science |
| keywords[2].score | 0.25083106756210327 |
| keywords[2].display_name | Computer science |
| keywords[3].id | https://openalex.org/keywords/computer-security |
| keywords[3].score | 0.20118668675422668 |
| keywords[3].display_name | Computer security |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2410.10179 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2410.10179 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2410.10179 |
| locations[1].id | doi:10.48550/arxiv.2410.10179 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2410.10179 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5115596917 |
| authorships[0].author.orcid | https://orcid.org/0009-0008-0296-0183 |
| authorships[0].author.display_name | Shuo Yang |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Yang, Shuo |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5114338331 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Kun-Peng Ning |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Ning, Kun-Peng |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5100373459 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-6182-3786 |
| authorships[2].author.display_name | Yuyang Liu |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Liu, Yu-Yang |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5075620860 |
| authorships[3].author.orcid | https://orcid.org/0000-0001-6356-870X |
| authorships[3].author.display_name | Jianfeng Yao |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Yao, Jia-Yu |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5108056266 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-3626-2331 |
| authorships[4].author.display_name | Y. Tian |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Tian, Yong-Hong |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5009504566 |
| authorships[5].author.orcid | https://orcid.org/0000-0001-9200-9835 |
| authorships[5].author.display_name | Yanchen Song |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Song, Yi-Bing |
| authorships[5].is_corresponding | False |
| authorships[6].author.id | https://openalex.org/A5100621615 |
| authorships[6].author.orcid | https://orcid.org/0000-0002-2117-7425 |
| authorships[6].author.display_name | Yuan Li |
| authorships[6].author_position | last |
| authorships[6].raw_author_name | Yuan, Li |
| authorships[6].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2410.10179 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Is Parameter Collision Hindering Continual Learning in LLMs? |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T11902 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.8521000146865845 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Intelligent Tutoring Systems and Adaptive Learning |
| related_works | https://openalex.org/W4391375266, https://openalex.org/W3113932901, https://openalex.org/W650625605, https://openalex.org/W2801025257, https://openalex.org/W2551285827, https://openalex.org/W1919219501, https://openalex.org/W2027504272, https://openalex.org/W2069703662, https://openalex.org/W2372181157, https://openalex.org/W2759268906 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2410.10179 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2410.10179 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2410.10179 |
| primary_location.id | pmh:oai:arXiv.org:2410.10179 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2410.10179 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2410.10179 |
| publication_date | 2024-10-14 |
| publication_year | 2024 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 52, 76, 111 |
| abstract_inverted_index.CL | 58, 122, 129 |
| abstract_inverted_index.as | 28 |
| abstract_inverted_index.be | 87 |
| abstract_inverted_index.in | 56, 89, 123 |
| abstract_inverted_index.is | 51, 75 |
| abstract_inverted_index.it | 94 |
| abstract_inverted_index.on | 32, 127 |
| abstract_inverted_index.to | 36, 97, 120 |
| abstract_inverted_index.we | 45, 105 |
| abstract_inverted_index.Our | 60 |
| abstract_inverted_index.and | 62, 143 |
| abstract_inverted_index.but | 78 |
| abstract_inverted_index.can | 69 |
| abstract_inverted_index.for | 19 |
| abstract_inverted_index.low | 117 |
| abstract_inverted_index.yet | 113 |
| abstract_inverted_index.(CL) | 17 |
| abstract_inverted_index.SOTA | 150 |
| abstract_inverted_index.from | 6, 40, 83 |
| abstract_inverted_index.more | 53, 95 |
| abstract_inverted_index.seen | 100 |
| abstract_inverted_index.such | 27 |
| abstract_inverted_index.task | 72, 139 |
| abstract_inverted_index.than | 149 |
| abstract_inverted_index.that | 47, 66, 132 |
| abstract_inverted_index.this | 43, 103 |
| abstract_inverted_index.when | 9 |
| abstract_inverted_index.will | 86 |
| abstract_inverted_index.(*4.1 | 141 |
| abstract_inverted_index.LLMs. | 124 |
| abstract_inverted_index.Large | 0 |
| abstract_inverted_index.data. | 101 |
| abstract_inverted_index.focus | 31 |
| abstract_inverted_index.lower | 144 |
| abstract_inverted_index.often | 4 |
| abstract_inverted_index.rates | 119 |
| abstract_inverted_index.tasks | 12, 35 |
| abstract_inverted_index.their | 20 |
| abstract_inverted_index.which | 74 |
| abstract_inverted_index.(*58.1 | 147 |
| abstract_inverted_index.(LLMs) | 3 |
| abstract_inverted_index.(SOTA) | 25 |
| abstract_inverted_index.Models | 2 |
| abstract_inverted_index.N-LoRA | 133 |
| abstract_inverted_index.better | 71 |
| abstract_inverted_index.factor | 55 |
| abstract_inverted_index.forget | 98 |
| abstract_inverted_index.higher | 138 |
| abstract_inverted_index.making | 14, 93 |
| abstract_inverted_index.paper, | 44 |
| abstract_inverted_index.reveal | 46 |
| abstract_inverted_index.simple | 112 |
| abstract_inverted_index.suffer | 5 |
| abstract_inverted_index.times) | 148 |
| abstract_inverted_index.(+2.9), | 137 |
| abstract_inverted_index.O-LoRA, | 29 |
| abstract_inverted_index.domains | 85 |
| abstract_inverted_index.dynamic | 21 |
| abstract_inverted_index.enhance | 121 |
| abstract_inverted_index.propose | 106 |
| abstract_inverted_index.provide | 70 |
| abstract_inverted_index.results | 126 |
| abstract_inverted_index.times), | 142 |
| abstract_inverted_index.various | 41 |
| abstract_inverted_index.Existing | 23 |
| abstract_inverted_index.Language | 1 |
| abstract_inverted_index.Low-Rank | 108 |
| abstract_inverted_index.achieves | 134 |
| abstract_inverted_index.analyses | 64 |
| abstract_inverted_index.approach | 115 |
| abstract_inverted_index.building | 48 |
| abstract_inverted_index.critical | 54 |
| abstract_inverted_index.decouple | 37 |
| abstract_inverted_index.indicate | 131 |
| abstract_inverted_index.insight, | 104 |
| abstract_inverted_index.learning | 10, 16 |
| abstract_inverted_index.methods, | 26 |
| abstract_inverted_index.methods. | 151 |
| abstract_inverted_index.multiple | 11, 84, 128 |
| abstract_inverted_index.superior | 135 |
| abstract_inverted_index.(N-LoRA), | 110 |
| abstract_inverted_index.collision | 118, 146 |
| abstract_inverted_index.continual | 15 |
| abstract_inverted_index.difficult | 96 |
| abstract_inverted_index.effective | 114 |
| abstract_inverted_index.essential | 18 |
| abstract_inverted_index.knowledge | 82 |
| abstract_inverted_index.parameter | 38, 91, 145 |
| abstract_inverted_index.preserved | 88 |
| abstract_inverted_index.typically | 30 |
| abstract_inverted_index.Adaptation | 109 |
| abstract_inverted_index.Leveraging | 102 |
| abstract_inverted_index.addressing | 57 |
| abstract_inverted_index.benchmarks | 130 |
| abstract_inverted_index.condition. | 80 |
| abstract_inverted_index.domains.In | 42 |
| abstract_inverted_index.forgetting | 8 |
| abstract_inverted_index.leveraging | 116 |
| abstract_inverted_index.parameters | 50, 68 |
| abstract_inverted_index.previously | 99 |
| abstract_inverted_index.subspaces, | 92 |
| abstract_inverted_index.sufficient | 77 |
| abstract_inverted_index.challenges. | 59 |
| abstract_inverted_index.demonstrate | 65 |
| abstract_inverted_index.deployment. | 22 |
| abstract_inverted_index.performance | 136 |
| abstract_inverted_index.theoretical | 61 |
| abstract_inverted_index.unnecessary | 79 |
| abstract_inverted_index.Experimental | 125 |
| abstract_inverted_index.Furthermore, | 81 |
| abstract_inverted_index.catastrophic | 7 |
| abstract_inverted_index.constructing | 33 |
| abstract_inverted_index.experimental | 63 |
| abstract_inverted_index.Non-collision | 107 |
| abstract_inverted_index.non-collision | 49, 67, 90 |
| abstract_inverted_index.orthogonality | 34, 140 |
| abstract_inverted_index.sequentially, | 13 |
| abstract_inverted_index.orthogonality, | 73 |
| abstract_inverted_index.interdependence | 39 |
| abstract_inverted_index.state-of-the-art | 24 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 7 |
| citation_normalized_percentile |